A Universal Adversarial Attack on CNN-SAR Image Classification by Feature Dictionary Modeling

Wei-Bo Qin, Feng Wang
{"title":"A Universal Adversarial Attack on CNN-SAR Image Classification by Feature Dictionary Modeling","authors":"Wei-Bo Qin, Feng Wang","doi":"10.1109/IGARSS46834.2022.9883668","DOIUrl":null,"url":null,"abstract":"Synthetic aperture radar (SAR) image classification with deep learning methods has achieved high accuracy on a variety of scenes. Despite the excellent performance of new methods, the phenomenon that small perturbations in data might lead to a sharp change in the result, raises attention to these black architectures. Increasing number of adversarial attacks on convolutional neural network (CNN) have been proposed, while these methods construct their adversarial examples with the aid of corresponding classifiers. Such condition cannot be realized in actual confrontation. Therefore, we introduce a universal adversarial attack on CNN-SAR image classification. In essence, this method focuses on distinguishing target distribution by feature dictionary modeling, excluding prior knowledge of any classifier. Experiments on simulated data of plane models indicate that this proposed method works well at various typical CNNs.","PeriodicalId":426003,"journal":{"name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","volume":"161 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS46834.2022.9883668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Synthetic aperture radar (SAR) image classification with deep learning methods has achieved high accuracy on a variety of scenes. Despite the excellent performance of new methods, the phenomenon that small perturbations in data might lead to a sharp change in the result, raises attention to these black architectures. Increasing number of adversarial attacks on convolutional neural network (CNN) have been proposed, while these methods construct their adversarial examples with the aid of corresponding classifiers. Such condition cannot be realized in actual confrontation. Therefore, we introduce a universal adversarial attack on CNN-SAR image classification. In essence, this method focuses on distinguishing target distribution by feature dictionary modeling, excluding prior knowledge of any classifier. Experiments on simulated data of plane models indicate that this proposed method works well at various typical CNNs.
基于特征字典建模的CNN-SAR图像分类通用对抗性攻击
基于深度学习方法的合成孔径雷达(SAR)图像分类在多种场景下都取得了较高的分类精度。尽管新方法性能优异,但数据中的微小扰动可能导致结果急剧变化的现象引起了人们对这些黑色体系结构的关注。针对卷积神经网络(CNN)的对抗性攻击越来越多,而这些方法借助于相应的分类器来构造其对抗性示例。这种情况在实际对抗中是无法实现的。因此,我们在CNN-SAR图像分类中引入了一种通用的对抗性攻击。本质上,该方法的重点是通过特征字典建模来区分目标分布,排除任何分类器的先验知识。平面模型的仿真数据实验表明,该方法在各种典型cnn上都能取得良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信