A Triangular Systolic Array Based Digital Architecture for Computing Eigenvalues of Asymmetric Matrix

E. Ozturk, Ilayda Koseoglu, M. Yalçin
{"title":"A Triangular Systolic Array Based Digital Architecture for Computing Eigenvalues of Asymmetric Matrix","authors":"E. Ozturk, Ilayda Koseoglu, M. Yalçin","doi":"10.1109/CNNA49188.2021.9610808","DOIUrl":null,"url":null,"abstract":"This paper proposes a time-efficient parallel architecture for computing eigenvalues of asymmetric matrix with real values. The QR algorithm is used to compute the eigenvalues of asymmetric matrices. The QR decomposition process is required for the QR algorithm. The Modified Gram Schmidt (MGS) Orthogonalization is structurally suitable for parallel implementation by creating a triangular systolic array architecture. This architecture is created by placing boundary cell (BC) and internal cell (IC) modules in a triangle. In each iteration, Q column vector and R diagonal element are produced within the BC module, R upper diagonal elements are produced in IC modules. In the TSA model created for the next matrix, n diagonal (BC) modules, (n (n-l)) / 2 off-diagonal (IC) modules were used. Diagonal elements are produced, 4 BC, 6 ICs are used for the 4x4 matrix input in the implemented structure. The intended time efficiency is achieved thanks to the parallel IC modules.","PeriodicalId":325231,"journal":{"name":"2021 17th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA)","volume":"228 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA49188.2021.9610808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a time-efficient parallel architecture for computing eigenvalues of asymmetric matrix with real values. The QR algorithm is used to compute the eigenvalues of asymmetric matrices. The QR decomposition process is required for the QR algorithm. The Modified Gram Schmidt (MGS) Orthogonalization is structurally suitable for parallel implementation by creating a triangular systolic array architecture. This architecture is created by placing boundary cell (BC) and internal cell (IC) modules in a triangle. In each iteration, Q column vector and R diagonal element are produced within the BC module, R upper diagonal elements are produced in IC modules. In the TSA model created for the next matrix, n diagonal (BC) modules, (n (n-l)) / 2 off-diagonal (IC) modules were used. Diagonal elements are produced, 4 BC, 6 ICs are used for the 4x4 matrix input in the implemented structure. The intended time efficiency is achieved thanks to the parallel IC modules.
一种基于三角收缩阵列的非对称矩阵特征值计算数字架构
提出了一种计算实值非对称矩阵特征值的高效并行结构。采用QR算法计算非对称矩阵的特征值。QR算法需要进行QR分解过程。改进的Gram Schmidt (MGS)正交化通过创建三角形收缩阵列结构在结构上适合于并行实现。该架构是通过将边界单元(BC)和内部单元(IC)模块放置在三角形中创建的。每次迭代,在BC模块内产生Q列向量和R对角元素,在IC模块内产生R上对角元素。在为下一个矩阵创建的TSA模型中,使用n个对角(BC)模块,(n (n- 1)) / 2个非对角(IC)模块。产生对角线元素,4 BC, 6 ic用于实现结构中的4x4矩阵输入。由于并行IC模块,达到了预期的时间效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信