On some statistics of fractional Brownian motion

V. Bondarenko
{"title":"On some statistics of fractional Brownian motion","authors":"V. Bondarenko","doi":"10.20535/SRIT.2308-8893.2021.1.11","DOIUrl":null,"url":null,"abstract":"Fractional Brownian motion as a method for estimating the parameters of a stochastic process by variance and one-step increment covariance is proposed and substantiated. The root-mean-square consistency of the constructed estimates has been proven. The obtained results complement and generalize the consequences of limit theorems for fractional Brownian motion, that have been proved in the number of articles. The necessity to estimate the variance is caused by the absence of a base unit of time and the estimation of the covariance allows one to determine the Hurst exponent. The established results let the known limit theorems to be used to construct goodness-of-fit criteria for the hypothesis “the observed time series is a transformation of fractional Brownian motion” and to estimate the error of optimal forecasting for time series.","PeriodicalId":330635,"journal":{"name":"System research and information technologies","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"System research and information technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20535/SRIT.2308-8893.2021.1.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fractional Brownian motion as a method for estimating the parameters of a stochastic process by variance and one-step increment covariance is proposed and substantiated. The root-mean-square consistency of the constructed estimates has been proven. The obtained results complement and generalize the consequences of limit theorems for fractional Brownian motion, that have been proved in the number of articles. The necessity to estimate the variance is caused by the absence of a base unit of time and the estimation of the covariance allows one to determine the Hurst exponent. The established results let the known limit theorems to be used to construct goodness-of-fit criteria for the hypothesis “the observed time series is a transformation of fractional Brownian motion” and to estimate the error of optimal forecasting for time series.
分数布朗运动的一些统计量
提出并证实了分数阶布朗运动作为方差和一步增量协方差估计随机过程参数的方法。证明了所构造估计的均方根一致性。所得结果补充并推广了分数阶布朗运动的极限定理,这些定理已在许多文章中得到证明。估计方差的必要性是由于缺乏基本时间单位造成的,而协方差的估计使人们能够确定赫斯特指数。所建立的结果使已知的极限定理可以用于构造“观测时间序列是分数阶布朗运动的变换”假设的拟合优度判据和估计时间序列最优预测的误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信