An open source platform to estimate Soil Moisture using Machine Learning Methods based on Eo-learn library

N. Jarray, Ali Ben Abbes, M. Rhif, F. Chouikhi, I. Farah
{"title":"An open source platform to estimate Soil Moisture using Machine Learning Methods based on Eo-learn library","authors":"N. Jarray, Ali Ben Abbes, M. Rhif, F. Chouikhi, I. Farah","doi":"10.1109/ICOTEN52080.2021.9493556","DOIUrl":null,"url":null,"abstract":"Soil moisture (SM), is an important hydrologic variable that controls the interactions between land surface and atmosphere. It leads to the quantification of the quantity of water in the soil. Earth observation provides satellite data with high spatial and temporal resolution that is a key component for the estimated SM. Several Machine learning (ML) methods are used to estimate SM. In this paper, we present a platform open source to estimate SM based on Eo-learn library. The platform is developed in a complete sequence from the download of the sentinel-1A and sentinel-2A images, preprocessing, feature extraction and application of the ML models for the generation of the targeted SM data based on the Eo-learn architecture. In this work, we apply this platform to estimate SM in southern Tunisia, using the annual satellite images Sentinel-1A and Sentinel-2A from 2016 to 2017.","PeriodicalId":308802,"journal":{"name":"2021 International Congress of Advanced Technology and Engineering (ICOTEN)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Congress of Advanced Technology and Engineering (ICOTEN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOTEN52080.2021.9493556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Soil moisture (SM), is an important hydrologic variable that controls the interactions between land surface and atmosphere. It leads to the quantification of the quantity of water in the soil. Earth observation provides satellite data with high spatial and temporal resolution that is a key component for the estimated SM. Several Machine learning (ML) methods are used to estimate SM. In this paper, we present a platform open source to estimate SM based on Eo-learn library. The platform is developed in a complete sequence from the download of the sentinel-1A and sentinel-2A images, preprocessing, feature extraction and application of the ML models for the generation of the targeted SM data based on the Eo-learn architecture. In this work, we apply this platform to estimate SM in southern Tunisia, using the annual satellite images Sentinel-1A and Sentinel-2A from 2016 to 2017.
基于Eo-learn库的机器学习方法估算土壤湿度的开源平台
土壤湿度是控制地表与大气相互作用的重要水文变量。它导致土壤中水量的量化。地球观测提供了具有高时空分辨率的卫星数据,这是估算平均海平面的关键组成部分。使用了几种机器学习(ML)方法来估计SM。本文提出了一个开源的基于Eo-learn库的SM估计平台。该平台是基于Eo-learn架构,从sentinel-1A和sentinel-2A图像的下载,预处理,特征提取和ML模型的应用,生成目标SM数据的完整序列开发的。在这项工作中,我们使用2016年至2017年的Sentinel-1A和Sentinel-2A年度卫星图像,将该平台应用于突尼斯南部的SM估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信