Comparison of EKF based SLAM and optimization based SLAM algorithms

Yanhao Zhang, Teng Zhang, Shoudong Huang
{"title":"Comparison of EKF based SLAM and optimization based SLAM algorithms","authors":"Yanhao Zhang, Teng Zhang, Shoudong Huang","doi":"10.1109/ICIEA.2018.8397911","DOIUrl":null,"url":null,"abstract":"This paper compares the recent developed state-of-the-art extended Kalman filter (EKF) based simultaneous localization and mapping (SLAM) algorithm, namely, invariant EKF SLAM, with the nonlinear least squares optimization based SLAM algorithms. Simulations in 1D, 2D, and 3D are used to evaluate the invariant EKF SLAM algorithm. It is demonstrated that in most 2D/3D scenarios with practical noise levels, the accuracy of invariant EKF is very close to that of nonlinear least squares optimization based SLAM. In the simple 1D case, the Kalman filter results and the linear least squares results are exactly the same (for any noise levels) due to the linear motion model and linear observation model involved.","PeriodicalId":140420,"journal":{"name":"2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2018.8397911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

This paper compares the recent developed state-of-the-art extended Kalman filter (EKF) based simultaneous localization and mapping (SLAM) algorithm, namely, invariant EKF SLAM, with the nonlinear least squares optimization based SLAM algorithms. Simulations in 1D, 2D, and 3D are used to evaluate the invariant EKF SLAM algorithm. It is demonstrated that in most 2D/3D scenarios with practical noise levels, the accuracy of invariant EKF is very close to that of nonlinear least squares optimization based SLAM. In the simple 1D case, the Kalman filter results and the linear least squares results are exactly the same (for any noise levels) due to the linear motion model and linear observation model involved.
基于EKF的SLAM与基于优化的SLAM算法的比较
本文比较了最近发展的基于扩展卡尔曼滤波(EKF)的同步定位与映射(SLAM)算法,即不变EKF SLAM与基于非线性最小二乘优化的SLAM算法。采用一维、二维和三维仿真对不变EKF SLAM算法进行了评价。结果表明,在大多数具有实际噪声水平的2D/3D场景中,不变EKF的精度非常接近基于非线性最小二乘优化的SLAM。在简单1D情况下,由于涉及线性运动模型和线性观测模型,卡尔曼滤波结果和线性最小二乘结果完全相同(对于任何噪声水平)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信