Automatic Measures for Predicting Performance in Off-Line Signature

F. Alonso-Fernandez, M. Fairhurst, Julian Fierrez, J. Ortega-Garcia
{"title":"Automatic Measures for Predicting Performance in Off-Line Signature","authors":"F. Alonso-Fernandez, M. Fairhurst, Julian Fierrez, J. Ortega-Garcia","doi":"10.1109/ICIP.2007.4378968","DOIUrl":null,"url":null,"abstract":"Performance in terms of accuracy is one of the most important goal of a biometric system. Hence, having a measure which is able to predict the performance with respect to a particular sample of interest is specially useful, and can be exploited in a number of ways. In this paper, we present two automatic measures for predicting the performance in off-line signature verification. Results obtained on a sub-corpus of the MCYT signature database confirms a relationship between the proposed measures and system error rates measured in terms of equal error rate (EER), false acceptance rate (FAR) and false rejection rate (FRR).","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4378968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

Abstract

Performance in terms of accuracy is one of the most important goal of a biometric system. Hence, having a measure which is able to predict the performance with respect to a particular sample of interest is specially useful, and can be exploited in a number of ways. In this paper, we present two automatic measures for predicting the performance in off-line signature verification. Results obtained on a sub-corpus of the MCYT signature database confirms a relationship between the proposed measures and system error rates measured in terms of equal error rate (EER), false acceptance rate (FAR) and false rejection rate (FRR).
离线签名性能预测的自动度量方法
准确度方面的性能是生物识别系统最重要的目标之一。因此,拥有一个能够预测特定感兴趣的样本的性能的度量是特别有用的,并且可以通过多种方式加以利用。在本文中,我们提出了两种预测离线签名验证性能的自动度量。在MCYT特征库的子语料库上获得的结果证实了所提出的度量与系统错误率之间的关系,该错误率以等错误率(EER)、误接受率(FAR)和误拒率(FRR)来衡量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信