{"title":"X-Tracking: Tracking Human in Masking Surveillance Video","authors":"Zewei Wu, Wei Ke, Cui Wang, Z. Xiong","doi":"10.1109/UV56588.2022.10185520","DOIUrl":null,"url":null,"abstract":"Pedestrian tracking studies have been facilitated by a large amount of surveillance apparatus in the city while also raising public privacy concerns. In this paper, we propose X-Tracking, a privacy-aware pedestrian tracking paradigm designed for vision systems in Smart City. It allows low-cost compatibility with existing surveillance architecture. To protect entities’ privacy, X-Tracking uses video pre-processing with desensitization so that identity information is unexposed to the tracking algorithm. We implement system-level privacy protection by redesigning the tracking framework that decouples all services based on a single responsibility principle. Then, we elaborate on the roles, behaviors, and protocols used in the new system and illustrate how the paradigm strikes a favorable balance between privacy protection and convenience services. Furthermore, we propose a new tracking task that aims to track humans in masking surveillance video. It is comparable to previous tracking tasks but considering the target with a distorted appearance poses new challenges for visual tracking. Finally, we evaluate the baseline algorithm on the task with a demo dataset.","PeriodicalId":211011,"journal":{"name":"2022 6th International Conference on Universal Village (UV)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Universal Village (UV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UV56588.2022.10185520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Pedestrian tracking studies have been facilitated by a large amount of surveillance apparatus in the city while also raising public privacy concerns. In this paper, we propose X-Tracking, a privacy-aware pedestrian tracking paradigm designed for vision systems in Smart City. It allows low-cost compatibility with existing surveillance architecture. To protect entities’ privacy, X-Tracking uses video pre-processing with desensitization so that identity information is unexposed to the tracking algorithm. We implement system-level privacy protection by redesigning the tracking framework that decouples all services based on a single responsibility principle. Then, we elaborate on the roles, behaviors, and protocols used in the new system and illustrate how the paradigm strikes a favorable balance between privacy protection and convenience services. Furthermore, we propose a new tracking task that aims to track humans in masking surveillance video. It is comparable to previous tracking tasks but considering the target with a distorted appearance poses new challenges for visual tracking. Finally, we evaluate the baseline algorithm on the task with a demo dataset.