Towards Interactive Construction of Topical Hierarchy: A Recursive Tensor Decomposition Approach

Chi Wang, Xueqing Liu, Yanglei Song, Jiawei Han
{"title":"Towards Interactive Construction of Topical Hierarchy: A Recursive Tensor Decomposition Approach","authors":"Chi Wang, Xueqing Liu, Yanglei Song, Jiawei Han","doi":"10.1145/2783258.2783288","DOIUrl":null,"url":null,"abstract":"Automatic construction of user-desired topical hierarchies over large volumes of text data is a highly desirable but challenging task. This study proposes to give users freedom to construct topical hierarchies via interactive operations such as expanding a branch and merging several branches. Existing hierarchical topic modeling techniques are inadequate for this purpose because (1) they cannot consistently preserve the topics when the hierarchy structure is modified; and (2) the slow inference prevents swift response to user requests. In this study, we propose a novel method, called STROD, that allows efficient and consistent modification of topic hierarchies, based on a recursive generative model and a scalable tensor decomposition inference algorithm with theoretical performance guarantee. Empirical evaluation shows that STROD reduces the runtime of construction by several orders of magnitude, while generating consistent and quality hierarchies.","PeriodicalId":243428,"journal":{"name":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2783258.2783288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Automatic construction of user-desired topical hierarchies over large volumes of text data is a highly desirable but challenging task. This study proposes to give users freedom to construct topical hierarchies via interactive operations such as expanding a branch and merging several branches. Existing hierarchical topic modeling techniques are inadequate for this purpose because (1) they cannot consistently preserve the topics when the hierarchy structure is modified; and (2) the slow inference prevents swift response to user requests. In this study, we propose a novel method, called STROD, that allows efficient and consistent modification of topic hierarchies, based on a recursive generative model and a scalable tensor decomposition inference algorithm with theoretical performance guarantee. Empirical evaluation shows that STROD reduces the runtime of construction by several orders of magnitude, while generating consistent and quality hierarchies.
面向主题层次的交互构建:递归张量分解方法
在大量文本数据上自动构建用户期望的主题层次结构是一项非常理想但具有挑战性的任务。本研究建议通过扩展分支和合并多个分支等交互操作,让用户自由地构建主题层次结构。现有的层次主题建模技术不适合这一目的,因为:(1)当层次结构被修改时,它们不能一致地保留主题;(2)缓慢的推理妨碍了对用户请求的快速响应。在本研究中,我们提出了一种新的方法,称为STROD,它基于递归生成模型和具有理论性能保证的可扩展张量分解推理算法,允许高效和一致的主题层次修改。经验评价表明,STROD在生成一致性和质量层次的同时,将施工的运行时间缩短了几个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信