Automated Neutral Region selection using superpixels

L. Mandrake, D. Thompson, M. Gilmore, R. Castaño, E. Dobrea
{"title":"Automated Neutral Region selection using superpixels","authors":"L. Mandrake, D. Thompson, M. Gilmore, R. Castaño, E. Dobrea","doi":"10.1109/WHISPERS.2010.5594856","DOIUrl":null,"url":null,"abstract":"This work presents an automated approach utilizing superpixel segmentation for detecting spectrally Neutral Regions (NR) in hyperspectral images. NRs are often used in planetary geology as spectral divisors to Regions of Interest (ROI), both to enhance key mineralogical signatures and correct for systematic errors such as residual atmospheric distortion. We compare automated NR selections to handpicked examples with mineralogical summary products used in analysis of data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). We also present a new summary product to quantify the level of atmospheric distortion in a CRISM spectrum. We find that the automated algorithm matches manual NR detection with regards to mineral spectral contrast and outperforms manual selection for reducing atmospheric distortion.","PeriodicalId":193944,"journal":{"name":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2010.5594856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This work presents an automated approach utilizing superpixel segmentation for detecting spectrally Neutral Regions (NR) in hyperspectral images. NRs are often used in planetary geology as spectral divisors to Regions of Interest (ROI), both to enhance key mineralogical signatures and correct for systematic errors such as residual atmospheric distortion. We compare automated NR selections to handpicked examples with mineralogical summary products used in analysis of data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). We also present a new summary product to quantify the level of atmospheric distortion in a CRISM spectrum. We find that the automated algorithm matches manual NR detection with regards to mineral spectral contrast and outperforms manual selection for reducing atmospheric distortion.
使用超像素自动选择中性区域
这项工作提出了一种利用超像素分割来检测高光谱图像中的光谱中性区域(NR)的自动化方法。在行星地质学中,nmr通常用作感兴趣区域(ROI)的光谱除数,既可以增强关键的矿物学特征,又可以校正残留大气畸变等系统误差。我们将自动NR选择与精心挑选的示例进行比较,这些示例与用于分析火星紧凑型侦察成像光谱仪(CRISM)数据的矿物学摘要产品进行比较。我们还提出了一个新的总结产品来量化CRISM光谱中的大气畸变水平。我们发现,在矿物光谱对比度方面,自动算法与人工NR检测相匹配,并且在减少大气失真方面优于人工选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信