An Initial Guess Free Method for Least Squares Parameter Estimation in Nonlinear Models

Guanglu Zhang, D. Allaire, J. Cagan
{"title":"An Initial Guess Free Method for Least Squares Parameter Estimation in Nonlinear Models","authors":"Guanglu Zhang, D. Allaire, J. Cagan","doi":"10.1115/detc2020-22047","DOIUrl":null,"url":null,"abstract":"\n Fitting models to data is critical in many science and engineering fields. A major task in fitting models to data is to estimate the value of each parameter in a given model. Iterative methods, such as the Gauss-Newton method and the Levenberg-Marquardt method, are often employed for parameter estimation in nonlinear models. However, practitioners must guess the initial value for each parameter in order to initialize these iterative methods. A poor initial guess can contribute to non-convergence of these methods or lead these methods to converge to a wrong solution. In this paper, an initial guess free method is introduced to find the optimal parameter estimators in a nonlinear model that minimizes the squared error of the fit. The method includes three algorithms that require different level of computational power to find the optimal parameter estimators. The method constructs a solution interval for each parameter in the model. These solution intervals significantly reduce the search space for optimal parameter estimators. The method also provides an empirical probability distribution for each parameter, which is valuable for parameter uncertainty assessment. The initial guess free method is validated through a case study in which Fick’s second law is fit to an experimental data set. This case study shows that the initial guess free method can find the optimal parameter estimators efficiently. A four-step procedure for implementing the initial guess free method in practice is also outlined.","PeriodicalId":164403,"journal":{"name":"Volume 9: 40th Computers and Information in Engineering Conference (CIE)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: 40th Computers and Information in Engineering Conference (CIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Fitting models to data is critical in many science and engineering fields. A major task in fitting models to data is to estimate the value of each parameter in a given model. Iterative methods, such as the Gauss-Newton method and the Levenberg-Marquardt method, are often employed for parameter estimation in nonlinear models. However, practitioners must guess the initial value for each parameter in order to initialize these iterative methods. A poor initial guess can contribute to non-convergence of these methods or lead these methods to converge to a wrong solution. In this paper, an initial guess free method is introduced to find the optimal parameter estimators in a nonlinear model that minimizes the squared error of the fit. The method includes three algorithms that require different level of computational power to find the optimal parameter estimators. The method constructs a solution interval for each parameter in the model. These solution intervals significantly reduce the search space for optimal parameter estimators. The method also provides an empirical probability distribution for each parameter, which is valuable for parameter uncertainty assessment. The initial guess free method is validated through a case study in which Fick’s second law is fit to an experimental data set. This case study shows that the initial guess free method can find the optimal parameter estimators efficiently. A four-step procedure for implementing the initial guess free method in practice is also outlined.
非线性模型最小二乘参数估计的无初始猜想方法
在许多科学和工程领域,将模型拟合到数据是至关重要的。拟合模型与数据的一个主要任务是估计给定模型中每个参数的值。非线性模型的参数估计通常采用迭代方法,如高斯-牛顿法和Levenberg-Marquardt法。然而,从业者必须猜测每个参数的初始值,以便初始化这些迭代方法。错误的初始猜测可能导致这些方法的不收敛或导致这些方法收敛到错误的解。本文介绍了一种无需初始猜测的方法,用于在非线性模型中寻找最优参数估计量,使拟合的平方误差最小。该方法包括三种算法,它们需要不同的计算能力来找到最优的参数估计量。该方法为模型中的每个参数构造一个解区间。这些解区间显著减少了最优参数估计器的搜索空间。该方法还提供了各参数的经验概率分布,为参数不确定性评估提供了依据。通过菲克第二定律适用于实验数据集的案例研究,验证了最初的无猜测方法。实例研究表明,该方法可以有效地找到最优参数估计量。本文还概述了在实践中实现初始无猜测方法的四步程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信