Federated Learning with Spiking Neural Networks in Heterogeneous Systems

Sadia Anjum Tumpa, Sonali Singh, Md Fahim Faysal Khan, M. Kandemir, N. Vijaykrishnan, Chita R. Das
{"title":"Federated Learning with Spiking Neural Networks in Heterogeneous Systems","authors":"Sadia Anjum Tumpa, Sonali Singh, Md Fahim Faysal Khan, M. Kandemir, N. Vijaykrishnan, Chita R. Das","doi":"10.1109/ISVLSI59464.2023.10238618","DOIUrl":null,"url":null,"abstract":"With the advances in IoT and edge-computing, Federated Learning is ever more popular as it offers data privacy. Low-power spiking neural networks (SNN) are ideal candidates for local nodes in such federated setup. Most prior works assume that the participating nodes have uniform compute resources, which may not be practical. In this work, we propose a federated SNN learning framework for a realistic heterogeneous environment, consisting of nodes with diverse memory-compute capabilities through activation-checkpointing and time-skipping that offers ~$4\\times$ reduction in effective memory requirement for low-memory nodes while improving the accuracy upto 10% for non-independent and identically-distributed data.","PeriodicalId":199371,"journal":{"name":"2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI59464.2023.10238618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the advances in IoT and edge-computing, Federated Learning is ever more popular as it offers data privacy. Low-power spiking neural networks (SNN) are ideal candidates for local nodes in such federated setup. Most prior works assume that the participating nodes have uniform compute resources, which may not be practical. In this work, we propose a federated SNN learning framework for a realistic heterogeneous environment, consisting of nodes with diverse memory-compute capabilities through activation-checkpointing and time-skipping that offers ~$4\times$ reduction in effective memory requirement for low-memory nodes while improving the accuracy upto 10% for non-independent and identically-distributed data.
基于脉冲神经网络的异构系统联邦学习
随着物联网和边缘计算的进步,联邦学习越来越受欢迎,因为它提供了数据隐私。低功耗尖峰神经网络(SNN)是这种联合设置中局部节点的理想选择。大多数先前的工作假设参与节点具有统一的计算资源,这可能不实际。在这项工作中,我们为现实的异构环境提出了一个联合SNN学习框架,该框架由具有不同内存计算能力的节点组成,通过激活检查点和时间跳变,可以将低内存节点的有效内存需求降低约4倍,同时将非独立和相同分布的数据的准确性提高10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信