An improved algorithm for locality-sensitive hashing

Wei Cen, Kehua Miao
{"title":"An improved algorithm for locality-sensitive hashing","authors":"Wei Cen, Kehua Miao","doi":"10.1109/ICCSE.2015.7250218","DOIUrl":null,"url":null,"abstract":"We present an improved Locality-Sensitive Hashing for similarity search under high dimension search. Our scheme improves the running time based on the earlier algorithm Locality-Sensitive Hashing for hamming distance and euclidean distance. In this paper we have collected a database of The MNIST DATABASE, we proposed nearest neighbor search in the database and can get a good result in an acceptable time. The experimental results show that our data structure is up to about 10 times faster than ordinary Locality-Sensitive Hashing when working on a database of 60000 samples. At the same time, the accuracy rate and recall rate are higher than earlier algorithms.","PeriodicalId":311451,"journal":{"name":"2015 10th International Conference on Computer Science & Education (ICCSE)","volume":"348 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Conference on Computer Science & Education (ICCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSE.2015.7250218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We present an improved Locality-Sensitive Hashing for similarity search under high dimension search. Our scheme improves the running time based on the earlier algorithm Locality-Sensitive Hashing for hamming distance and euclidean distance. In this paper we have collected a database of The MNIST DATABASE, we proposed nearest neighbor search in the database and can get a good result in an acceptable time. The experimental results show that our data structure is up to about 10 times faster than ordinary Locality-Sensitive Hashing when working on a database of 60000 samples. At the same time, the accuracy rate and recall rate are higher than earlier algorithms.
一种改进的位置敏感散列算法
提出了一种改进的位置敏感哈希算法,用于高维搜索下的相似度搜索。该方案在先前的汉明距离和欧氏距离的位置敏感哈希算法的基础上改进了运行时间。本文收集了一个MNIST database数据库,提出了在数据库中进行最近邻搜索,并在可接受的时间内得到了很好的结果。实验结果表明,当处理60000个样本的数据库时,我们的数据结构比普通的位置敏感散列快10倍左右。同时,该算法的准确率和召回率均高于已有的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信