Speech compaction using vector quantisation and hidden Markov models

D. Cole, S. Sridharan
{"title":"Speech compaction using vector quantisation and hidden Markov models","authors":"D. Cole, S. Sridharan","doi":"10.1109/ISSPA.1999.818216","DOIUrl":null,"url":null,"abstract":"We present techniques for the time compaction of speech using vector quantisation and hidden Markov modelling. These aim to retain the most perceptually important information present in the speech signal, while discarding redundant information. The methods are compared with the conventional technique using synchronised overlap-add (SOLA) compaction, and with a recently proposed hierarchical temporal decomposition (HTD) based method. Using mean opinion score testing, they are found to give a better quality output than the SOLA method, and similar quality to the HTD.","PeriodicalId":302569,"journal":{"name":"ISSPA '99. Proceedings of the Fifth International Symposium on Signal Processing and its Applications (IEEE Cat. No.99EX359)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISSPA '99. Proceedings of the Fifth International Symposium on Signal Processing and its Applications (IEEE Cat. No.99EX359)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.1999.818216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present techniques for the time compaction of speech using vector quantisation and hidden Markov modelling. These aim to retain the most perceptually important information present in the speech signal, while discarding redundant information. The methods are compared with the conventional technique using synchronised overlap-add (SOLA) compaction, and with a recently proposed hierarchical temporal decomposition (HTD) based method. Using mean opinion score testing, they are found to give a better quality output than the SOLA method, and similar quality to the HTD.
使用向量量化和隐马尔可夫模型的语音压缩
我们提出了使用矢量量化和隐马尔可夫建模对语音进行时间压缩的技术。这些方法旨在保留语音信号中存在的最重要的感知信息,同时丢弃冗余信息。将这些方法与使用同步重叠添加(SOLA)压缩的传统技术以及最近提出的基于分层时间分解(HTD)的方法进行了比较。使用平均意见得分测试,发现它们比SOLA方法提供了更好的输出质量,并且与HTD的质量相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信