Cellular automata and powers of p∕q

J. Kari, Johan Kopra
{"title":"Cellular automata and powers of p∕q","authors":"J. Kari, Johan Kopra","doi":"10.1051/ITA/2017014","DOIUrl":null,"url":null,"abstract":"We consider one-dimensional cellular automata $F_{p,q}$ which multiply numbers by $p/q$ in base $pq$ for relatively prime integers $p$ and $q$. By studying the structure of traces with respect to $F_{p,q}$ we show that for $p\\geq 2q-1$ (and then as a simple corollary for $p>q>1$) there are arbitrarily small finite unions of intervals which contain the fractional parts of the sequence $\\xi(p/q)^n$, ($n=0,1,2,\\dots$) for some $\\xi>0$. To the other direction, by studying the measure theoretical properties of $F_{p,q}$, we show that for $p>q>1$ there are finite unions of intervals approximating the unit interval arbitrarily well which don't contain the fractional parts of the whole sequence $\\xi(p/q)^n$ for any $\\xi>0$.","PeriodicalId":438841,"journal":{"name":"RAIRO Theor. Informatics Appl.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Theor. Informatics Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ITA/2017014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We consider one-dimensional cellular automata $F_{p,q}$ which multiply numbers by $p/q$ in base $pq$ for relatively prime integers $p$ and $q$. By studying the structure of traces with respect to $F_{p,q}$ we show that for $p\geq 2q-1$ (and then as a simple corollary for $p>q>1$) there are arbitrarily small finite unions of intervals which contain the fractional parts of the sequence $\xi(p/q)^n$, ($n=0,1,2,\dots$) for some $\xi>0$. To the other direction, by studying the measure theoretical properties of $F_{p,q}$, we show that for $p>q>1$ there are finite unions of intervals approximating the unit interval arbitrarily well which don't contain the fractional parts of the whole sequence $\xi(p/q)^n$ for any $\xi>0$.
元胞自动机与p∕q的幂
我们考虑一维元胞自动机$F_{p,q}$,它对相对素数$p$和$q$以$pq$为基数乘以$p/q$。通过研究关于$F_{p,q}$的轨迹结构,我们表明,对于$p\geq 2q-1$(然后作为$p>q>1$的一个简单推论),存在任意小的区间有限联合,其中包含序列$\xi(p/q)^n$的小数部分,($n=0,1,2,\dots$)对于某些$\xi>0$。在另一个方向上,通过研究$F_{p,q}$的测度理论性质,我们证明了对于$p>q>1$,存在任意很好地逼近单位区间的区间有限联合,它们不包含对于任何$\xi>0$的整个序列$\xi(p/q)^n$的小数部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信