Classification of Protein Crystallization Images using EfficientNet with Data Augmentation

David William Edwards II, I. Dinç
{"title":"Classification of Protein Crystallization Images using EfficientNet with Data Augmentation","authors":"David William Edwards II, I. Dinç","doi":"10.1145/3429210.3429220","DOIUrl":null,"url":null,"abstract":"In this paper, we applied EfficientNet, a scalable deep convolution neural network, with a custom data augmentation stage to a public protein crystallization image dataset called MARCO. The MARCO dataset has 493,214 protein crystallization images collected from several well-known institutions. In our experiments, EfficientNet outperformed the accuracies reported in the previous studies, and it reached an overall 96.71% testing and 91.33% validation accuracy on the dataset. Also, EfficientNet achieved 97.23% crystal detection accuracy in testing data, which is significant improvement over existing studies.","PeriodicalId":164790,"journal":{"name":"CSBio '20: Proceedings of the Eleventh International Conference on Computational Systems-Biology and Bioinformatics","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSBio '20: Proceedings of the Eleventh International Conference on Computational Systems-Biology and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3429210.3429220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we applied EfficientNet, a scalable deep convolution neural network, with a custom data augmentation stage to a public protein crystallization image dataset called MARCO. The MARCO dataset has 493,214 protein crystallization images collected from several well-known institutions. In our experiments, EfficientNet outperformed the accuracies reported in the previous studies, and it reached an overall 96.71% testing and 91.33% validation accuracy on the dataset. Also, EfficientNet achieved 97.23% crystal detection accuracy in testing data, which is significant improvement over existing studies.
基于数据增强的高效网蛋白质结晶图像分类
在本文中,我们将可扩展深度卷积神经网络EfficientNet与自定义数据增强阶段应用于公共蛋白质结晶图像数据集MARCO。MARCO数据集收集了来自多个知名机构的493214张蛋白质结晶图像。在我们的实验中,EfficientNet在数据集上的总体测试准确率达到96.71%,验证准确率达到91.33%,优于以往研究报告的准确率。此外,EfficientNet在测试数据中实现了97.23%的晶体检测准确率,与现有研究相比有了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信