Computationally Constructed Concepts: A Machine Learning Approach to Metaphor Interpretation Using Usage-Based Construction Grammatical Cues

Zachary P. Rosen
{"title":"Computationally Constructed Concepts: A Machine Learning Approach to Metaphor Interpretation Using Usage-Based Construction Grammatical Cues","authors":"Zachary P. Rosen","doi":"10.18653/v1/W18-0912","DOIUrl":null,"url":null,"abstract":"The current study seeks to implement a deep learning classification algorithm using argument-structure level representation of metaphoric constructions, for the identification of source domain mappings in metaphoric utterances. It thus builds on previous work in computational metaphor interpretation (Mohler et al. 2014; Shutova 2010; Bollegala & Shutova 2013; Hong 2016; Su et al. 2017) while implementing a theoretical framework based off of work in the interface of metaphor and construction grammar (Sullivan 2006, 2007, 2013). The results indicate that it is possible to achieve an accuracy of approximately 80.4% using the proposed method, combining construction grammatical features with a simple deep learning NN. I attribute this increase in accuracy to the use of constructional cues, extracted from the raw text of metaphoric instances.","PeriodicalId":190853,"journal":{"name":"Fig-Lang@NAACL-HLT","volume":"15 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fig-Lang@NAACL-HLT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W18-0912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The current study seeks to implement a deep learning classification algorithm using argument-structure level representation of metaphoric constructions, for the identification of source domain mappings in metaphoric utterances. It thus builds on previous work in computational metaphor interpretation (Mohler et al. 2014; Shutova 2010; Bollegala & Shutova 2013; Hong 2016; Su et al. 2017) while implementing a theoretical framework based off of work in the interface of metaphor and construction grammar (Sullivan 2006, 2007, 2013). The results indicate that it is possible to achieve an accuracy of approximately 80.4% using the proposed method, combining construction grammatical features with a simple deep learning NN. I attribute this increase in accuracy to the use of constructional cues, extracted from the raw text of metaphoric instances.
计算构建的概念:使用基于用法的结构语法线索进行隐喻解释的机器学习方法
目前的研究试图实现一种深度学习分类算法,使用隐喻结构的论点结构级表示,用于识别隐喻话语中的源域映射。因此,它建立在先前在计算隐喻解释方面的工作基础上(Mohler et al. 2014;Shutova 2010;Bollegala & Shutova 2013;香港2016;Su et al. 2017),同时实现了基于隐喻和结构语法接口工作的理论框架(Sullivan 2006,2007,2013)。结果表明,使用该方法,将结构语法特征与简单的深度学习NN相结合,可以达到约80.4%的准确率。我把这种准确性的提高归因于从隐喻实例的原始文本中提取的结构线索的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信