Artificial Neural-Network-Based Maximum Power Point Tracking for Photovoltaic Pumping System Using Backstepping Controller

Rafika EL Idrissi, A. Abbou, M. Salimi
{"title":"Artificial Neural-Network-Based Maximum Power Point Tracking for Photovoltaic Pumping System Using Backstepping Controller","authors":"Rafika EL Idrissi, A. Abbou, M. Salimi","doi":"10.1109/RTUCON.2018.8659808","DOIUrl":null,"url":null,"abstract":"This paper investigates a comparative analysis of control methods to achieve an optimal photovoltaic (PV) module output voltage and to track the maximum power point (MPP) of the PV system under variable conditions such as temperature, solar irradiance, and load changes, with the help of an offline trained actificial neural (ANN) network. The trained ANN provides the reference voltage corresponding to the MPP for the feed-forward loop which is responsible for regulation of the solar cell array voltage in MPP. The PV system consists of a solar module and a boost DC/DC converter connected to a DC motor which feeds a centrifugal pump for water pumping. Depending on the voltage error signal, the controllers generate a control signal for the pulse-width modulation (PWM) generator which in turn adjusts the duty cycle of the converter. For this purpose first, the proportional-integral (PI) controller is used. Next controllers are based on backstepping approach and the backstepping with integral action. Different simulation tests using Maltab/Simulink environment are given to demonstrate the efficiency of the controllers in presence of the irradiance perturbations.","PeriodicalId":192943,"journal":{"name":"2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTUCON.2018.8659808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper investigates a comparative analysis of control methods to achieve an optimal photovoltaic (PV) module output voltage and to track the maximum power point (MPP) of the PV system under variable conditions such as temperature, solar irradiance, and load changes, with the help of an offline trained actificial neural (ANN) network. The trained ANN provides the reference voltage corresponding to the MPP for the feed-forward loop which is responsible for regulation of the solar cell array voltage in MPP. The PV system consists of a solar module and a boost DC/DC converter connected to a DC motor which feeds a centrifugal pump for water pumping. Depending on the voltage error signal, the controllers generate a control signal for the pulse-width modulation (PWM) generator which in turn adjusts the duty cycle of the converter. For this purpose first, the proportional-integral (PI) controller is used. Next controllers are based on backstepping approach and the backstepping with integral action. Different simulation tests using Maltab/Simulink environment are given to demonstrate the efficiency of the controllers in presence of the irradiance perturbations.
基于人工神经网络的反步控制光伏抽水系统最大功率点跟踪
本文利用离线训练的人工神经网络(ANN),研究了在温度、太阳辐照度和负载变化等可变条件下,实现光伏(PV)模块最佳输出电压和跟踪光伏系统最大功率点(MPP)的控制方法的对比分析。训练后的神经网络为前馈回路提供与MPP相对应的参考电压,前馈回路在MPP中负责太阳能电池阵列电压的调节。该光伏系统由太阳能模块和升压DC/DC转换器组成,升压DC/DC转换器连接到直流电机,直流电机为离心泵提供水泵。根据电压误差信号,控制器为脉宽调制(PWM)发生器产生控制信号,进而调节变换器的占空比。为此,首先使用比例积分(PI)控制器。下一步控制器是基于反步方法和积分动作的反步。在Maltab/Simulink环境下进行了不同的仿真实验,验证了该控制器在辐照度摄动情况下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信