Motion segmentation using GPCA techniques and optical flow

C. Losada, M. Mazo, S. Palazuelos, Jose L. Martín, J. J. García
{"title":"Motion segmentation using GPCA techniques and optical flow","authors":"C. Losada, M. Mazo, S. Palazuelos, Jose L. Martín, J. J. García","doi":"10.1145/1352694.1352714","DOIUrl":null,"url":null,"abstract":"In this work, the use of the Generalized Principal Components Analysis (G-PCA) to improve the segmentation of moving objects in image sequences is proposed. In order to obtain this improvement, the noise components in the image derivatives are reduced, and afterwards, a method based on linear algebra is used to make the segmentation. Furthermore this work presents diverse tests to compare the results reached with and without the noise reduction in the image derivatives, and using the nonlinear minimization of an error function. A remarkable improvement in the segmentation quality and the processing time can be observed in every experiment when using the proposed method.","PeriodicalId":165011,"journal":{"name":"Euro American Conference on Telematics and Information Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Euro American Conference on Telematics and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1352694.1352714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the use of the Generalized Principal Components Analysis (G-PCA) to improve the segmentation of moving objects in image sequences is proposed. In order to obtain this improvement, the noise components in the image derivatives are reduced, and afterwards, a method based on linear algebra is used to make the segmentation. Furthermore this work presents diverse tests to compare the results reached with and without the noise reduction in the image derivatives, and using the nonlinear minimization of an error function. A remarkable improvement in the segmentation quality and the processing time can be observed in every experiment when using the proposed method.
利用GPCA技术和光流进行运动分割
在这项工作中,提出了使用广义主成分分析(G-PCA)来改进图像序列中运动目标的分割。为了获得这种改进,首先降低图像导数中的噪声成分,然后采用基于线性代数的方法进行分割。此外,本工作提出了不同的测试,以比较在图像导数中使用非线性最小化误差函数的降噪和不使用降噪的结果。在每次实验中,我们都能观察到该方法在分割质量和处理时间上的显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信