Parallel Projections for Manifold Learning

H. Strange, R. Zwiggelaar
{"title":"Parallel Projections for Manifold Learning","authors":"H. Strange, R. Zwiggelaar","doi":"10.1109/ICMLA.2010.54","DOIUrl":null,"url":null,"abstract":"Manifold learning is a widely used statistical tool which reduces the dimensionality of a data set while aiming to maintain both local and global properties of the data. We present a novel manifold learning technique which aligns local hyper planes to build a global representation of the data. A Minimum Spanning Tree provides the skeleton needed to traverse the manifold so that the local hyper planes can be merged using parallel projections to build a global hyper plane of the data. We show state of the art results when compared against existing manifold learning algorithm on both artificial and real world image data.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Manifold learning is a widely used statistical tool which reduces the dimensionality of a data set while aiming to maintain both local and global properties of the data. We present a novel manifold learning technique which aligns local hyper planes to build a global representation of the data. A Minimum Spanning Tree provides the skeleton needed to traverse the manifold so that the local hyper planes can be merged using parallel projections to build a global hyper plane of the data. We show state of the art results when compared against existing manifold learning algorithm on both artificial and real world image data.
流形学习的并行投影
流形学习是一种广泛使用的统计工具,它可以降低数据集的维数,同时保持数据的局部和全局属性。我们提出了一种新的流形学习技术,通过对齐局部超平面来构建数据的全局表示。最小生成树提供了遍历流形所需的骨架,以便使用并行投影合并局部超平面以构建数据的全局超平面。我们展示了与现有的流形学习算法在人工和真实世界图像数据上的比较结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信