Hypercube implementation of the simplex algorithm

C. Stunkel, D. Reed
{"title":"Hypercube implementation of the simplex algorithm","authors":"C. Stunkel, D. Reed","doi":"10.1145/63047.63104","DOIUrl":null,"url":null,"abstract":"Large, sparse, linear systems of equations arise frequently when constructing mathematical models of natural phenomena. Most often, these linear systems are fully constrained and can be solved via direct or iterative techniques. However, one important problem class requires solutions to underconstrained linear systems that maximize some objective function. These linear optimization problems are natural formulations of many business plans and often contain hundreds of equations with thousands of variables. Historically, linear optimization problems have been solved via the simplex method. Despite the excellent performance of the simplex method, the size of the optimization problems and the frequency of their solution make linear optimization a computationally taxing endeavor. This paper examines the performance of parallel variants of the simplex algorithm on the Intel iPSC, a message-based parallel system. Linear optimization test data are drawn from commercial sources and represent realistic problems. Analysis shows that the speedup obtained is sensitive to both the structure of the underlying data and the data partitioning.","PeriodicalId":299435,"journal":{"name":"Conference on Hypercube Concurrent Computers and Applications","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Hypercube Concurrent Computers and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/63047.63104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Large, sparse, linear systems of equations arise frequently when constructing mathematical models of natural phenomena. Most often, these linear systems are fully constrained and can be solved via direct or iterative techniques. However, one important problem class requires solutions to underconstrained linear systems that maximize some objective function. These linear optimization problems are natural formulations of many business plans and often contain hundreds of equations with thousands of variables. Historically, linear optimization problems have been solved via the simplex method. Despite the excellent performance of the simplex method, the size of the optimization problems and the frequency of their solution make linear optimization a computationally taxing endeavor. This paper examines the performance of parallel variants of the simplex algorithm on the Intel iPSC, a message-based parallel system. Linear optimization test data are drawn from commercial sources and represent realistic problems. Analysis shows that the speedup obtained is sensitive to both the structure of the underlying data and the data partitioning.
超立方体实现的单纯形算法
在构建自然现象的数学模型时,经常会出现大型的、稀疏的线性方程组。大多数情况下,这些线性系统是完全受限的,可以通过直接或迭代技术来解决。然而,有一类重要的问题需要求解使某些目标函数最大化的欠约束线性系统。这些线性优化问题是许多商业计划的自然公式,通常包含数百个方程和数千个变量。历史上,线性优化问题是通过单纯形法来解决的。尽管单纯形法具有优异的性能,但优化问题的规模和求解的频率使线性优化成为一项计算上的繁重工作。本文研究了单纯形算法的并行变体在Intel iPSC(一个基于消息的并行系统)上的性能。线性优化测试数据来自商业来源,代表现实问题。分析表明,所获得的加速对底层数据的结构和数据分区都很敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信