An Experimental Evaluation of the Kubernetes Cluster Autoscaler in the Cloud

Mulugeta Ayalew Tamiru, Johan Tordsson, E. Elmroth, G. Pierre
{"title":"An Experimental Evaluation of the Kubernetes Cluster Autoscaler in the Cloud","authors":"Mulugeta Ayalew Tamiru, Johan Tordsson, E. Elmroth, G. Pierre","doi":"10.1109/CloudCom49646.2020.00002","DOIUrl":null,"url":null,"abstract":"Despite the abundant research in cloud autoscaling, autoscaling in Kubernetes, arguably the most popular cloud platform today, is largely unexplored. Kubernetes' Cluster Autoscaler can be configured to select nodes either from a single node pool (CA) or from multiple node pools (CA-NAP). We evaluate and compare these configurations using two representative applications and workloads on Google Kubernetes Engine (GKE). We report our results using monetary cost and standard autoscaling performance metrics (under- and over-provisioning accuracy, under- and over-provisioning timeshare, instability of elasticity and deviation from the theoretical optimal autoscaler) endorsed by the SPEC Cloud Group. We show that, overall, CA-NAP outperforms CA and that autoscaling performance depends mainly on the composition of the workload. We compare our results with those of the related work and point out further configuration tuning opportunities to improve performance and cost-saving.","PeriodicalId":401135,"journal":{"name":"2020 IEEE International Conference on Cloud Computing Technology and Science (CloudCom)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Cloud Computing Technology and Science (CloudCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudCom49646.2020.00002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Despite the abundant research in cloud autoscaling, autoscaling in Kubernetes, arguably the most popular cloud platform today, is largely unexplored. Kubernetes' Cluster Autoscaler can be configured to select nodes either from a single node pool (CA) or from multiple node pools (CA-NAP). We evaluate and compare these configurations using two representative applications and workloads on Google Kubernetes Engine (GKE). We report our results using monetary cost and standard autoscaling performance metrics (under- and over-provisioning accuracy, under- and over-provisioning timeshare, instability of elasticity and deviation from the theoretical optimal autoscaler) endorsed by the SPEC Cloud Group. We show that, overall, CA-NAP outperforms CA and that autoscaling performance depends mainly on the composition of the workload. We compare our results with those of the related work and point out further configuration tuning opportunities to improve performance and cost-saving.
Kubernetes集群自动缩放器在云端的实验评估
尽管在云自动扩展方面有大量的研究,但Kubernetes(可以说是当今最流行的云平台)的自动扩展在很大程度上还没有被探索过。Kubernetes的Cluster Autoscaler可以配置为从单个节点池(CA)或多个节点池(CA- nap)中选择节点。我们使用Google Kubernetes Engine (GKE)上的两个代表性应用程序和工作负载来评估和比较这些配置。我们使用经SPEC Cloud Group认可的货币成本和标准自动缩放性能指标(配置不足和过度的准确性、配置不足和过度的分时时间、弹性的不稳定性和与理论最优自动缩放器的偏差)来报告我们的结果。我们表明,总的来说,CA- nap优于CA,并且自动缩放性能主要取决于工作负载的组成。我们将我们的结果与相关工作的结果进行比较,并指出进一步的配置调优机会,以提高性能和节省成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信