Fuzzy inverse incremental model as tracking controller for SISO systems

M. Joshi, P. G. Poonacha, B. Seth
{"title":"Fuzzy inverse incremental model as tracking controller for SISO systems","authors":"M. Joshi, P. G. Poonacha, B. Seth","doi":"10.1109/FUZZY.1994.343600","DOIUrl":null,"url":null,"abstract":"The problems encountered in using a fuzzy logic-based single neuron controller (SNC) for the tracking control of nonlinear SISO systems are shown to be overcome by the use of a fuzzy inverse incremental model (FIIM) of the same process as the tracking controller. The proposed method of tracking control uses online tuning of the universe of discourse and online identification of the FIIM. Three different algorithms for the linguistic/fuzzy modeling of SISO systems are proposed. The comparative results of using these algorithms for the tracking control of some nonlinear systems are shown.<<ETX>>","PeriodicalId":153967,"journal":{"name":"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference","volume":"23 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1994.343600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The problems encountered in using a fuzzy logic-based single neuron controller (SNC) for the tracking control of nonlinear SISO systems are shown to be overcome by the use of a fuzzy inverse incremental model (FIIM) of the same process as the tracking controller. The proposed method of tracking control uses online tuning of the universe of discourse and online identification of the FIIM. Three different algorithms for the linguistic/fuzzy modeling of SISO systems are proposed. The comparative results of using these algorithms for the tracking control of some nonlinear systems are shown.<>
模糊逆增量模型作为SISO系统的跟踪控制器
使用基于模糊逻辑的单神经元控制器(SNC)进行非线性SISO系统跟踪控制时遇到的问题,通过使用与跟踪控制器相同过程的模糊逆增量模型(FIIM)来克服。所提出的跟踪控制方法采用在线调整话语域和在线识别FIIM。提出了三种不同的SISO系统语言/模糊建模算法。最后给出了用这些算法对一些非线性系统进行跟踪控制的比较结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信