Application of Data Mining Classification Algorithms for Breast Cancer Diagnosis

Hajar Saoud, A. Ghadi, M. Ghailani, Anouar Boudhir Abdelhakim
{"title":"Application of Data Mining Classification Algorithms for Breast Cancer Diagnosis","authors":"Hajar Saoud, A. Ghadi, M. Ghailani, Anouar Boudhir Abdelhakim","doi":"10.1145/3286606.3286861","DOIUrl":null,"url":null,"abstract":"Breast cancer is one of the diseases that represent a large number of incidence and mortality in the world. Data mining classifications techniques will be effective tools for classifying data of cancer to facilitate decision-making. The objective of this paper is to compare the performance of different machine learning algorithms in the diagnosis of breast cancer, to define exactly if this type of cancer is a benign or malignant tumor. Six machine learning algorithms were evaluated in this research Bayes Network (BN), Support Vector Machine (SVM), k-nearest neighbors algorithm (Knn), Artificial Neural Network (ANN), Decision Tree (C4.5) and Logistic Regression. The simulation of the algorithms is done using the WEKA tool (The Waikato Environment for Knowledge Analysis) on the Wisconsin breast cancer dataset available in UCI machine learning repository.","PeriodicalId":416459,"journal":{"name":"Proceedings of the 3rd International Conference on Smart City Applications","volume":"248 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Smart City Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3286606.3286861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Breast cancer is one of the diseases that represent a large number of incidence and mortality in the world. Data mining classifications techniques will be effective tools for classifying data of cancer to facilitate decision-making. The objective of this paper is to compare the performance of different machine learning algorithms in the diagnosis of breast cancer, to define exactly if this type of cancer is a benign or malignant tumor. Six machine learning algorithms were evaluated in this research Bayes Network (BN), Support Vector Machine (SVM), k-nearest neighbors algorithm (Knn), Artificial Neural Network (ANN), Decision Tree (C4.5) and Logistic Regression. The simulation of the algorithms is done using the WEKA tool (The Waikato Environment for Knowledge Analysis) on the Wisconsin breast cancer dataset available in UCI machine learning repository.
数据挖掘分类算法在乳腺癌诊断中的应用
乳腺癌是世界上发病率和死亡率最高的疾病之一。数据挖掘分类技术将成为癌症数据分类的有效工具。本文的目的是比较不同机器学习算法在乳腺癌诊断中的表现,以准确定义这种类型的癌症是良性还是恶性肿瘤。本研究评估了六种机器学习算法:贝叶斯网络(BN)、支持向量机(SVM)、k近邻算法(Knn)、人工神经网络(ANN)、决策树(C4.5)和逻辑回归。算法的模拟是使用WEKA工具(怀卡托知识分析环境)在UCI机器学习存储库中提供的威斯康星乳腺癌数据集上完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信