Tail-biting products trellises, the BCJR-construction and their duals

H. Gluesing-Luerssen, Elizabeth A. Weaver
{"title":"Tail-biting products trellises, the BCJR-construction and their duals","authors":"H. Gluesing-Luerssen, Elizabeth A. Weaver","doi":"10.1109/CIG.2010.5592710","DOIUrl":null,"url":null,"abstract":"We consider the constructions of tail-biting trellises for linear codes introduced by Koetter/Vardy [6] and Nori/Shankar [12]. We will show that each one-to-one product trellis can be merged to a BCJR-trellis defined in a slightly stronger sense than in [12] and that each trellis that originates from the characteristic matrix defined in [6] is a BCJR-trellis. Furthermore, BCJR-trellises are always nonmergeable. Finally, we will consider a certain duality conjecture of Koetter/Vardy and show that it holds true for minimal trellises.","PeriodicalId":354925,"journal":{"name":"2010 IEEE Information Theory Workshop","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Information Theory Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2010.5592710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the constructions of tail-biting trellises for linear codes introduced by Koetter/Vardy [6] and Nori/Shankar [12]. We will show that each one-to-one product trellis can be merged to a BCJR-trellis defined in a slightly stronger sense than in [12] and that each trellis that originates from the characteristic matrix defined in [6] is a BCJR-trellis. Furthermore, BCJR-trellises are always nonmergeable. Finally, we will consider a certain duality conjecture of Koetter/Vardy and show that it holds true for minimal trellises.
咬尾产品格架、bcjr结构及其双联
我们考虑了Koetter/Vardy[6]和Nori/Shankar[12]引入的线性码的咬尾格架结构。我们将证明,每个一对一乘积格可以合并到比[12]中定义的更强一点的bcjr -格,并且起源于[6]中定义的特征矩阵的每个格都是bcjr -格。此外,bcjr -格架总是不可合并的。最后,我们将考虑Koetter/Vardy的一个对偶猜想,并证明它对最小格架是成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信