In-memory grid files on graphics processors

Ke Yang, Bingsheng He, Rui Fang, Mian Lu, N. Govindaraju, Qiong Luo, P. Sander, Jiaoying Shi
{"title":"In-memory grid files on graphics processors","authors":"Ke Yang, Bingsheng He, Rui Fang, Mian Lu, N. Govindaraju, Qiong Luo, P. Sander, Jiaoying Shi","doi":"10.1145/1363189.1363196","DOIUrl":null,"url":null,"abstract":"Recently, graphics processing units, or GPUs, have become a viable alternative as commodity, parallel hardware for general-purpose computing, due to their massive data-parallelism, high memory bandwidth, and improved general-purpose programming interface. In this paper, we explore the use of GPU on the grid file, a traditional multidimensional access method. Considering the hardware characteristics of GPUs, we design a massively multi-threaded GPU-based grid file for static, memory-resident multidimensional point data. Moreover, we propose a hierarchical grid file variant to handle data skews efficiently. Our implementations on the NVIDIA G80 GTX graphics card are able to achieve two to eight times' higher performance than their CPU counterparts on a single PC.","PeriodicalId":298901,"journal":{"name":"International Workshop on Data Management on New Hardware","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Data Management on New Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1363189.1363196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Recently, graphics processing units, or GPUs, have become a viable alternative as commodity, parallel hardware for general-purpose computing, due to their massive data-parallelism, high memory bandwidth, and improved general-purpose programming interface. In this paper, we explore the use of GPU on the grid file, a traditional multidimensional access method. Considering the hardware characteristics of GPUs, we design a massively multi-threaded GPU-based grid file for static, memory-resident multidimensional point data. Moreover, we propose a hierarchical grid file variant to handle data skews efficiently. Our implementations on the NVIDIA G80 GTX graphics card are able to achieve two to eight times' higher performance than their CPU counterparts on a single PC.
图形处理器上的内存网格文件
最近,图形处理单元(或gpu)由于其大量数据并行性、高内存带宽和改进的通用编程接口,已成为通用计算的商品并行硬件的可行替代方案。本文探讨了GPU在网格文件这一传统多维访问方法上的应用。考虑到gpu的硬件特点,我们设计了一个基于gpu的大规模多线程网格文件,用于静态的、内存驻留的多维点数据。此外,我们还提出了一种分层网格文件变体来有效地处理数据倾斜。我们在NVIDIA G80 GTX显卡上的实现能够实现比单个PC上的CPU同类产品高2到8倍的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信