Testing that a stationary time-series is Gaussian: time-domain vs. frequency-domain approaches

É. Moulines, J. W. Dalle Molle, K. Choukri, M. Charbit
{"title":"Testing that a stationary time-series is Gaussian: time-domain vs. frequency-domain approaches","authors":"É. Moulines, J. W. Dalle Molle, K. Choukri, M. Charbit","doi":"10.1109/HOST.1993.264540","DOIUrl":null,"url":null,"abstract":"Several frequency-domain and time-domain procedures for testing that a stationary time-series are Gaussian are presented. Closed-form expressions of the asymptotic distribution of the test statistics under the null hypothesis of Gaussianity are derived. These procedures are then compared and assessed in two typical examples of applications (i) the detection of additive non-Gaussian outliers in stationary Gaussian noise with unknown covariance and (ii) the detection of the presence of contaminating values from non-symmetric distributions.<<ETX>>","PeriodicalId":439030,"journal":{"name":"[1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1993.264540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Several frequency-domain and time-domain procedures for testing that a stationary time-series are Gaussian are presented. Closed-form expressions of the asymptotic distribution of the test statistics under the null hypothesis of Gaussianity are derived. These procedures are then compared and assessed in two typical examples of applications (i) the detection of additive non-Gaussian outliers in stationary Gaussian noise with unknown covariance and (ii) the detection of the presence of contaminating values from non-symmetric distributions.<>
测试平稳时间序列是高斯的:时域与频域方法
给出了几种测试平稳时间序列是否为高斯的频域和时域方法。导出了检验统计量在高斯性零假设下渐近分布的封闭表达式。然后在两个典型的应用实例中对这些程序进行比较和评估(i)在协方差未知的平稳高斯噪声中检测加性非高斯异常值和(ii)检测来自非对称分布的污染值的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信