Solar Filament Segmentation Based on AA-UNet

Ya-Na Wu, Dan Liu, Xiangchun Liu
{"title":"Solar Filament Segmentation Based on AA-UNet","authors":"Ya-Na Wu, Dan Liu, Xiangchun Liu","doi":"10.1109/ICARCE55724.2022.10046547","DOIUrl":null,"url":null,"abstract":"As a tracer of the solar atmospheric magnetic field, the solar filament is extremely important for studying the solar magnetic field. In order to solve the problems of low segmentation accuracy and noise in the existing filament segmentation methods, this paper proposes to replace the convolutional block with an axial attention block in the Encoder part based on the Unet structure. The AA-UNet network takes into account the contextual information among non-adjacent pixels, which helps to perform accurate segmentation. From the results of the comparison experiments in this paper, the proposed method can still achieve good segmentation results even in the case of uneven image quality. The Jac, MCC, and F1-Score metrics on our solar image data test set reach 0.63005, 0.77058, and 0.76659, respectively.","PeriodicalId":416305,"journal":{"name":"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCE55724.2022.10046547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As a tracer of the solar atmospheric magnetic field, the solar filament is extremely important for studying the solar magnetic field. In order to solve the problems of low segmentation accuracy and noise in the existing filament segmentation methods, this paper proposes to replace the convolutional block with an axial attention block in the Encoder part based on the Unet structure. The AA-UNet network takes into account the contextual information among non-adjacent pixels, which helps to perform accurate segmentation. From the results of the comparison experiments in this paper, the proposed method can still achieve good segmentation results even in the case of uneven image quality. The Jac, MCC, and F1-Score metrics on our solar image data test set reach 0.63005, 0.77058, and 0.76659, respectively.
基于AA-UNet的太阳能灯丝分割
太阳灯丝作为太阳大气磁场的示踪剂,对研究太阳磁场具有极其重要的意义。为了解决现有长丝分割方法分割精度低、噪声大的问题,本文提出基于Unet结构在编码器部分用轴向注意块代替卷积块。AA-UNet网络考虑了非相邻像素之间的上下文信息,有助于实现准确的分割。从本文的对比实验结果来看,即使在图像质量不均匀的情况下,本文提出的方法仍然可以获得良好的分割效果。我们的太阳图像数据测试集上的Jac、MCC和F1-Score指标分别达到0.63005、0.77058和0.76659。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信