Deep learning for credit card data analysis

A. Niimi
{"title":"Deep learning for credit card data analysis","authors":"A. Niimi","doi":"10.1109/WorldCIS.2015.7359417","DOIUrl":null,"url":null,"abstract":"In this paper, two major applications are introduced to develop advanced deep learning methods for credit-card data analysis. The proposed methods are validated using benchmark experiments with other machine learnings. The experiments confirm that deep learning exhibits similar accuracy to the Gaussian kernel SVM.","PeriodicalId":234497,"journal":{"name":"2015 World Congress on Internet Security (WorldCIS)","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 World Congress on Internet Security (WorldCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WorldCIS.2015.7359417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

In this paper, two major applications are introduced to develop advanced deep learning methods for credit-card data analysis. The proposed methods are validated using benchmark experiments with other machine learnings. The experiments confirm that deep learning exhibits similar accuracy to the Gaussian kernel SVM.
信用卡数据分析的深度学习
本文介绍了为信用卡数据分析开发高级深度学习方法的两个主要应用。使用其他机器学习的基准实验验证了所提出的方法。实验证明,深度学习与高斯核支持向量机具有相似的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信