Individual 3D Model Estimation for Realtime Human Motion Capture

Lianjun Liao, Le Su, Shi-hong Xia
{"title":"Individual 3D Model Estimation for Realtime Human Motion Capture","authors":"Lianjun Liao, Le Su, Shi-hong Xia","doi":"10.1109/ICVRV.2017.00055","DOIUrl":null,"url":null,"abstract":"In this paper, we present a practicable method to estimate individual 3D human model in a low cost multi-view realtime 3D human motion capture system. The key idea is: using human geometric model database and human motion database to establish geometric priors and pose prior model; when given the geometric prior, pose prior and a standard template geometry model, the individual human body model and its embedded skeleton can be estimated from the 3D point cloud captured from multiple depth cameras. Because of the introduction of the global prior model of body pose and shapes into a unified nonlinear optimization problem, the accuracy of geometric model estimation is significantly improved. The experiments on the synthesized data set with noise or without noise and the real data set captured from multiple depth cameras show that estimation result of our method is more reasonable and accurate than the classical method, and our method is better noise-immunity. The proposed new individual 3D geometric model estimation method is suitable for online realtime human motion tracking system.","PeriodicalId":187934,"journal":{"name":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","volume":"335 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRV.2017.00055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we present a practicable method to estimate individual 3D human model in a low cost multi-view realtime 3D human motion capture system. The key idea is: using human geometric model database and human motion database to establish geometric priors and pose prior model; when given the geometric prior, pose prior and a standard template geometry model, the individual human body model and its embedded skeleton can be estimated from the 3D point cloud captured from multiple depth cameras. Because of the introduction of the global prior model of body pose and shapes into a unified nonlinear optimization problem, the accuracy of geometric model estimation is significantly improved. The experiments on the synthesized data set with noise or without noise and the real data set captured from multiple depth cameras show that estimation result of our method is more reasonable and accurate than the classical method, and our method is better noise-immunity. The proposed new individual 3D geometric model estimation method is suitable for online realtime human motion tracking system.
个人三维模型估计实时人体运动捕捉
本文提出了一种在低成本多视角实时三维人体动作捕捉系统中估计个体三维人体模型的实用方法。关键思想是:利用人体几何模型数据库和人体运动数据库建立几何先验和位姿先验模型;当给定几何先验、位姿先验和标准模板几何模型时,可以从多个深度相机捕获的3D点云中估计出个体人体模型及其嵌入的骨骼。由于将人体姿态和形状的全局先验模型引入到统一的非线性优化问题中,大大提高了几何模型估计的精度。在含噪和不含噪的合成数据集以及多台深度相机采集的真实数据集上进行的实验表明,该方法的估计结果比经典方法更合理、更准确,并且具有更好的抗噪性。该方法适用于在线实时人体运动跟踪系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信