{"title":"Multi-resolution local binary patterns for image classification","authors":"Peng Liang, Shao-fa Li, Jiang Qin","doi":"10.1109/ICWAPR.2010.5576318","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method to extract image features for image classification. The extracted feature named multi-resolution local binary pattern (MR-LBP) is based on the local binary pattern (LBP) feature. The MR-LBP feature is highly distinctive by making use of multi-resolution patterns to obtain more descriptive information. The experiments results demonstrate the proposed MR-LBP feature is robust to image rotation, illumination changes and image noises. We also describe a descriptor called MR-LBP descriptor to using the features for image classification. Through experiments, our proposed approach performs favorably compared with the most well-known SIFT descriptor in two benchmark dataset. What's more, the proposed descriptor is computation simpler than the SIFT descriptor.","PeriodicalId":219884,"journal":{"name":"2010 International Conference on Wavelet Analysis and Pattern Recognition","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2010.5576318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
This paper presents a novel method to extract image features for image classification. The extracted feature named multi-resolution local binary pattern (MR-LBP) is based on the local binary pattern (LBP) feature. The MR-LBP feature is highly distinctive by making use of multi-resolution patterns to obtain more descriptive information. The experiments results demonstrate the proposed MR-LBP feature is robust to image rotation, illumination changes and image noises. We also describe a descriptor called MR-LBP descriptor to using the features for image classification. Through experiments, our proposed approach performs favorably compared with the most well-known SIFT descriptor in two benchmark dataset. What's more, the proposed descriptor is computation simpler than the SIFT descriptor.