Deep Reinforcement Learning based Congestion Control for V2X Communication

Moustafa Roshdi, Shubhangi Bhadauria, Khaled Hassan, Georg Fischer
{"title":"Deep Reinforcement Learning based Congestion Control for V2X Communication","authors":"Moustafa Roshdi, Shubhangi Bhadauria, Khaled Hassan, Georg Fischer","doi":"10.1109/PIMRC50174.2021.9569259","DOIUrl":null,"url":null,"abstract":"In release 14 (Rel-14) Long Term Evolution (LTE), the 3rd generation partnership project (3GPP) standard has introduced Cellular Vehicle to Everything (C-V2X) communication to pave the way for future intelligent transport systems (ITS). C-V2X communication envisions supporting a diverse range of use cases with varying quality of service (QoS) requirements. For example, cooperative collision avoidance re-quires stringent reliability, while infotainment use cases require a high data throughput. C-V2X communication remains susceptible to performance degradation due to network congestion. This paper presents a centralized congestion control scheme for C-V2X communication based on the Deep Reinforcement Learning (DRL) framework. A performance evaluation of the algorithm is conducted based on system-level simulation based on TAPASCologne scenario in the Simulation of Urban Mobility (SUMO) platform. The results show the effectiveness of a DRL-based approach to achieve the packet reception ratio (PRR) as per the packet’s associated QoS while maintaining the average measured Channel Busy Ratio (CBR) below 0.65.","PeriodicalId":283606,"journal":{"name":"2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)","volume":"287 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC50174.2021.9569259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In release 14 (Rel-14) Long Term Evolution (LTE), the 3rd generation partnership project (3GPP) standard has introduced Cellular Vehicle to Everything (C-V2X) communication to pave the way for future intelligent transport systems (ITS). C-V2X communication envisions supporting a diverse range of use cases with varying quality of service (QoS) requirements. For example, cooperative collision avoidance re-quires stringent reliability, while infotainment use cases require a high data throughput. C-V2X communication remains susceptible to performance degradation due to network congestion. This paper presents a centralized congestion control scheme for C-V2X communication based on the Deep Reinforcement Learning (DRL) framework. A performance evaluation of the algorithm is conducted based on system-level simulation based on TAPASCologne scenario in the Simulation of Urban Mobility (SUMO) platform. The results show the effectiveness of a DRL-based approach to achieve the packet reception ratio (PRR) as per the packet’s associated QoS while maintaining the average measured Channel Busy Ratio (CBR) below 0.65.
基于深度强化学习的V2X通信拥塞控制
在第14版(Rel-14)长期演进(LTE)中,第三代合作伙伴计划(3GPP)标准引入了蜂窝车辆到一切(C-V2X)通信,为未来的智能交通系统(ITS)铺平了道路。C-V2X通信设想支持具有不同服务质量(QoS)要求的各种用例。例如,协同防撞需要严格的可靠性,而信息娱乐用例需要高数据吞吐量。由于网络拥塞,C-V2X通信仍然容易受到性能下降的影响。提出了一种基于深度强化学习(DRL)框架的C-V2X通信集中拥塞控制方案。在城市交通仿真(SUMO)平台上,基于TAPASCologne场景的系统级仿真对算法进行了性能评估。结果表明,基于drl的方法可以有效地根据分组相关的QoS实现分组接收比(PRR),同时保持平均测量的信道忙比(CBR)低于0.65。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信