{"title":"ADEN: Adaptive Energy Efficient Network of Flying Robots Monitoring over Disaster Hit Area","authors":"T. Abishek, K. Chithra, M. Ramesh","doi":"10.1109/DCOSS.2012.50","DOIUrl":null,"url":null,"abstract":"The post disaster mitigation is the immediate task to be carried out in disaster affected areas in order to reduce the extent of damage and for early rehabilitation and reconstruction. This paper proposes a design framework for an optimal control strategy to efficiently perform surveillance over a wide disaster hit area using a network of flying robots to determine the extent of damage promptly so that the rescue operation can be carried out efficiently. The main focus of the paper is to develop a low cost and an adaptive energy efficient strategy with less power dissipation and delay compared to traditional methods. The routing protocol proposed in the paper efficiently determines the best route by taking account of the residual energy, signal strength and various environmental factors. Simulation results show that the proposed routing scheme achieves much higher performance than the classical routing protocols.","PeriodicalId":448418,"journal":{"name":"2012 IEEE 8th International Conference on Distributed Computing in Sensor Systems","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 8th International Conference on Distributed Computing in Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCOSS.2012.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The post disaster mitigation is the immediate task to be carried out in disaster affected areas in order to reduce the extent of damage and for early rehabilitation and reconstruction. This paper proposes a design framework for an optimal control strategy to efficiently perform surveillance over a wide disaster hit area using a network of flying robots to determine the extent of damage promptly so that the rescue operation can be carried out efficiently. The main focus of the paper is to develop a low cost and an adaptive energy efficient strategy with less power dissipation and delay compared to traditional methods. The routing protocol proposed in the paper efficiently determines the best route by taking account of the residual energy, signal strength and various environmental factors. Simulation results show that the proposed routing scheme achieves much higher performance than the classical routing protocols.