{"title":"Independence complexes of comaximal graphs of commutative rings with identity","authors":"Nela Milosevic","doi":"10.2298/PIM150126018M","DOIUrl":null,"url":null,"abstract":"We study topology of the independence complexes of comaximal (hyper)graphs of commutative rings with identity. We show that the independence complex of comaximal hypergraph is contractible or homotopy equivalent to a sphere, and that the independence complex of comaximal graph is almost always contractible.","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM150126018M","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We study topology of the independence complexes of comaximal (hyper)graphs of commutative rings with identity. We show that the independence complex of comaximal hypergraph is contractible or homotopy equivalent to a sphere, and that the independence complex of comaximal graph is almost always contractible.