{"title":"On six-dimensional Vaisman — Gray submanifolds of\nthe octave algebra","authors":"M. Banaru","doi":"10.5922/10.5922/0321-4796-2019-50-4","DOIUrl":null,"url":null,"abstract":"The W1 W4 class of almost Hermitian manifolds (in accordance with the Gray — Hervella classification) is usually named as the class of Vaisman — Gray manifolds. This class contains all Kählerian, nearly Kählerian and locally conformal Kählerian manifolds. As it is known, Vaisman — Gray manifolds are invariant under the conformal transformations of the metric. A criterion in the terms of the configuration tensor for an arbitrary six-dimensional submanifold of Cayley algebra to belong to the Vaisman — Gray class of almost Hermitian manifolds is established. The Cartan structural equations of the almost contact metric structures induced on oriented hypersurfaces of six-dimensional Vaisman — Gray submanifolds of the octave algebra are obtained. It is proved that totally geodesic hypersurfaces of six-dimensional Vaisman — Gray submanifolds of Cayley algebra admit nearly cosymplectic structures (or Endo structures). This result is a generalization of the previously proved fact that totally geodesic hypersurfaces of nearly Kählerian manifolds also admit nearly cosymplectic structures.","PeriodicalId":114406,"journal":{"name":"Differential Geometry of Manifolds of Figures","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry of Manifolds of Figures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5922/10.5922/0321-4796-2019-50-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The W1 W4 class of almost Hermitian manifolds (in accordance with the Gray — Hervella classification) is usually named as the class of Vaisman — Gray manifolds. This class contains all Kählerian, nearly Kählerian and locally conformal Kählerian manifolds. As it is known, Vaisman — Gray manifolds are invariant under the conformal transformations of the metric. A criterion in the terms of the configuration tensor for an arbitrary six-dimensional submanifold of Cayley algebra to belong to the Vaisman — Gray class of almost Hermitian manifolds is established. The Cartan structural equations of the almost contact metric structures induced on oriented hypersurfaces of six-dimensional Vaisman — Gray submanifolds of the octave algebra are obtained. It is proved that totally geodesic hypersurfaces of six-dimensional Vaisman — Gray submanifolds of Cayley algebra admit nearly cosymplectic structures (or Endo structures). This result is a generalization of the previously proved fact that totally geodesic hypersurfaces of nearly Kählerian manifolds also admit nearly cosymplectic structures.