Nonlinear optimal control of air handling unit via State Dependent Riccati Equation approach

Fariba Bouzari Liavoli, A. Fakharian
{"title":"Nonlinear optimal control of air handling unit via State Dependent Riccati Equation approach","authors":"Fariba Bouzari Liavoli, A. Fakharian","doi":"10.1109/ICCIAUTOM.2017.8258667","DOIUrl":null,"url":null,"abstract":"The Air Handling Unit (AHU) is used to provide clean air in the air conditioning systems that regulate both temperature and humidity to desired values. Because of nonlinear and complex nature of coupling between the air handling system variables, an effective control system confronts many challenges. Hence using an approach that can consider all the complexities of the dynamics model in terms of control process is impossible. In this paper, the State Dependent Riccati Equation (SDRE) approach is used for nonlinear optimal control of AHU system. In the proposed method, by using pseudo-linearization and maintaining all nonlinear features of system, optimal control law is produced for both stabilization and online output tracking. In addition, for tracking reference paths, the SDRE approach would be able to control effort and minimize the energy consumption. The SDRE approach is the state feedback control method. The simulation results show good performance of the SDRE method in the tracking reference paths despite the change of equilibrium point and disturbance in comparison with LQR.","PeriodicalId":197207,"journal":{"name":"2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2017.8258667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The Air Handling Unit (AHU) is used to provide clean air in the air conditioning systems that regulate both temperature and humidity to desired values. Because of nonlinear and complex nature of coupling between the air handling system variables, an effective control system confronts many challenges. Hence using an approach that can consider all the complexities of the dynamics model in terms of control process is impossible. In this paper, the State Dependent Riccati Equation (SDRE) approach is used for nonlinear optimal control of AHU system. In the proposed method, by using pseudo-linearization and maintaining all nonlinear features of system, optimal control law is produced for both stabilization and online output tracking. In addition, for tracking reference paths, the SDRE approach would be able to control effort and minimize the energy consumption. The SDRE approach is the state feedback control method. The simulation results show good performance of the SDRE method in the tracking reference paths despite the change of equilibrium point and disturbance in comparison with LQR.
基于状态相关Riccati方程的空气处理机组非线性最优控制
空气处理机组(AHU)用于在空调系统中提供清洁空气,将温度和湿度调节到所需值。由于空气处理系统变量之间耦合的非线性和复杂性,一个有效的控制系统面临着许多挑战。因此,从控制过程的角度考虑动力学模型的所有复杂性是不可能的。本文将状态相关Riccati方程(SDRE)方法应用于AHU系统的非线性最优控制。该方法采用伪线性化方法,保持系统的所有非线性特征,生成最优控制律,实现系统的镇定和在线输出跟踪。此外,对于跟踪参考路径,SDRE方法将能够控制工作量并最大限度地减少能耗。SDRE方法是一种状态反馈控制方法。仿真结果表明,与LQR相比,尽管平衡点和干扰发生了变化,SDRE方法在跟踪参考路径方面仍具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信