Robust visual tracking via an online multiple instance learning algorithm based on SIFT features

Liu Yuepeng, Zhang Shuyan, Zhao Lirui, Wang Xiaochen
{"title":"Robust visual tracking via an online multiple instance learning algorithm based on SIFT features","authors":"Liu Yuepeng, Zhang Shuyan, Zhao Lirui, Wang Xiaochen","doi":"10.1109/SIPROCESS.2016.7888229","DOIUrl":null,"url":null,"abstract":"This paper presented a SIFT based multiple instance learning algorithm to deal with the problem of pose variation in the tracking process. The MIL algorithm learns weak classifiers by using instances in the positive and negative bags. Then, a strong classifier is generated by powerful weak classifiers which are selected by maximizing the inner product between the classifier and the maximum likelihood probability of instances. The method avoid computing bag probability and instance probability M times, which reduces computational time. In the traditional MIL, Haar-like features are used to represent instances, which often suffers from computational load. To deal with the problem, Harris operator is introduced to determine the outstanding SIFT features for representing an instance. Combining the Harris operator and SIFT features, the number of the extracted features are seriously deduced. Finally, the proposed algorithm is evaluated on several classical videos. The experiment results show that the method performs better than the traditional MIL algorithm and weighted MIL algorithm (WMIL).","PeriodicalId":142802,"journal":{"name":"2016 IEEE International Conference on Signal and Image Processing (ICSIP)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Signal and Image Processing (ICSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPROCESS.2016.7888229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presented a SIFT based multiple instance learning algorithm to deal with the problem of pose variation in the tracking process. The MIL algorithm learns weak classifiers by using instances in the positive and negative bags. Then, a strong classifier is generated by powerful weak classifiers which are selected by maximizing the inner product between the classifier and the maximum likelihood probability of instances. The method avoid computing bag probability and instance probability M times, which reduces computational time. In the traditional MIL, Haar-like features are used to represent instances, which often suffers from computational load. To deal with the problem, Harris operator is introduced to determine the outstanding SIFT features for representing an instance. Combining the Harris operator and SIFT features, the number of the extracted features are seriously deduced. Finally, the proposed algorithm is evaluated on several classical videos. The experiment results show that the method performs better than the traditional MIL algorithm and weighted MIL algorithm (WMIL).
基于SIFT特征的在线多实例学习鲁棒视觉跟踪
本文提出了一种基于SIFT的多实例学习算法来处理跟踪过程中的位姿变化问题。MIL算法通过使用正袋和负袋中的实例来学习弱分类器。然后,通过最大化分类器与实例的最大似然概率之间的内积来选择强大的弱分类器,从而生成强分类器。该方法避免了包概率和实例概率的计算M次,减少了计算时间。在传统的MIL中,使用类haar特征来表示实例,这通常会受到计算负荷的影响。为了解决这一问题,引入Harris算子来确定SIFT的突出特征来表示一个实例。结合Harris算子和SIFT特征,认真推导了提取特征的数量。最后,在几个经典视频上对该算法进行了评价。实验结果表明,该方法优于传统的MIL算法和加权MIL算法(WMIL)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信