Prediction-Guided Performance Improvement on Compressed Memory Swap

Taejoon Song, Myeongseong Kim, Gunho Lee, Youngjin Kim
{"title":"Prediction-Guided Performance Improvement on Compressed Memory Swap","authors":"Taejoon Song, Myeongseong Kim, Gunho Lee, Youngjin Kim","doi":"10.1109/ICCE53296.2022.9730361","DOIUrl":null,"url":null,"abstract":"Due to ever increasing demands for memory size, compressed memory swap technique has been widely deployed in many consumer electronics. Although reducing data size effectively extends available memory, it inevitably brings computational overhead. Also, the effectiveness of this technique highly depends on the compression ratio. If there is a significant amount of incompressible data, the compression only brings unnecessary overhead without any benefits. In this paper, we address this problem by skipping the compression of incompressible pages in an efficient manner. We propose a novel compression predictor which quickly and accurately estimates whether a page is compressible or not. The experimental results show that our predictor can improve launch time by 29.5% on average with 97.4% accuracy.","PeriodicalId":350644,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics (ICCE)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE53296.2022.9730361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Due to ever increasing demands for memory size, compressed memory swap technique has been widely deployed in many consumer electronics. Although reducing data size effectively extends available memory, it inevitably brings computational overhead. Also, the effectiveness of this technique highly depends on the compression ratio. If there is a significant amount of incompressible data, the compression only brings unnecessary overhead without any benefits. In this paper, we address this problem by skipping the compression of incompressible pages in an efficient manner. We propose a novel compression predictor which quickly and accurately estimates whether a page is compressible or not. The experimental results show that our predictor can improve launch time by 29.5% on average with 97.4% accuracy.
预测导向的压缩内存交换性能改进
由于对内存大小的需求不断增加,压缩内存交换技术已广泛应用于许多消费电子产品中。虽然减少数据大小有效地扩展了可用内存,但它不可避免地带来了计算开销。此外,该技术的有效性在很大程度上取决于压缩比。如果有大量的不可压缩数据,那么压缩只会带来不必要的开销,没有任何好处。在本文中,我们以一种有效的方式跳过不可压缩页面的压缩来解决这个问题。我们提出了一种新的压缩预测器,可以快速准确地估计页面是否可压缩。实验结果表明,该预测器平均提高发射时间29.5%,准确率97.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信