Nanotechnology-Based Efficient Fault Tolerant Decoder in Reversible Logic

Nazma Tara, Md. Kamal Ibne Sufian, H. M. H. Babu
{"title":"Nanotechnology-Based Efficient Fault Tolerant Decoder in Reversible Logic","authors":"Nazma Tara, Md. Kamal Ibne Sufian, H. M. H. Babu","doi":"10.1109/WIECON-ECE.2017.8468937","DOIUrl":null,"url":null,"abstract":"Reversible logic has received great attention in last few years as it dissipates very low power. This paper presents the reversible logic synthesis for the n-to-2n fault tolerant decoder, where n is the number of data bits. A low cost 6 × 6 reversible gate is proposed to design a 2-to-4 reversible fault tolerant decoder which has least delay. An algorithm is derived to construct higher bit order decoder. Theoretical explanations certify the novelty of the proposed design. Comparing with previous works, the proposed design shows significant reduction in gate count, quantum cost and delay, which are 66.66%, 8.33%, 16.66%, respectively, with respect to the corresponding metrics of the best existing 2-to-4 fault tolerant decoder. Area and power consumption of the proposed circuit are also estimated.","PeriodicalId":188031,"journal":{"name":"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIECON-ECE.2017.8468937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Reversible logic has received great attention in last few years as it dissipates very low power. This paper presents the reversible logic synthesis for the n-to-2n fault tolerant decoder, where n is the number of data bits. A low cost 6 × 6 reversible gate is proposed to design a 2-to-4 reversible fault tolerant decoder which has least delay. An algorithm is derived to construct higher bit order decoder. Theoretical explanations certify the novelty of the proposed design. Comparing with previous works, the proposed design shows significant reduction in gate count, quantum cost and delay, which are 66.66%, 8.33%, 16.66%, respectively, with respect to the corresponding metrics of the best existing 2-to-4 fault tolerant decoder. Area and power consumption of the proposed circuit are also estimated.
基于纳米技术的可逆逻辑高效容错解码器
可逆逻辑由于功耗极低,近年来受到了广泛的关注。本文提出了n ~ 2n容错解码器的可逆逻辑综合,其中n为数据位数。提出了一种低成本的6 × 6可逆门,用于设计时延最小的2 ~ 4可逆容错解码器。推导了一种构造高位阶解码器的算法。理论解释证明了所提出的设计的新颖性。与已有的最佳2-to-4容错译码器的相应指标相比,本文的设计显著降低了门数、量子成本和时延,分别降低了66.66%、8.33%和16.66%。并对电路的面积和功耗进行了估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信