IMPLEMENTASI METODE K-MEDOIDS CLUSTERING UNTUK MENGETAHUI POLA PEMILIHAN PROGRAM STUDI MAHASIWA BARU TAHUN 2018 DI UNIVERSITAS KANJURUHAN MALANG

Bagus Wira, A. Budianto, Anggri Sartika Wiguna
{"title":"IMPLEMENTASI METODE K-MEDOIDS CLUSTERING UNTUK MENGETAHUI POLA PEMILIHAN PROGRAM STUDI MAHASIWA BARU TAHUN 2018 DI UNIVERSITAS KANJURUHAN MALANG","authors":"Bagus Wira, A. Budianto, Anggri Sartika Wiguna","doi":"10.21067/jtst.v1i3.3046","DOIUrl":null,"url":null,"abstract":"Setiap tahun Universitas Kanjuruhan Malang menerima hampir 2.000 mahasiswa yang tersebar diberbagai program studi. Oleh karenanya data yang telah ditampung pastinya banyak sekali, dari data tersebut dapat dilihat pola - pola pemilihan program studi berdasarkan nilai tes, asal sekolah, dan program studi. Penelitian ini menggunakan metode K-Medoids agar dapat diketahui pola pemilihan program studi bagi mahasiswa baru. K-Medoids merupakan metode partisional clustering dimana bertujuan untuk menemukan satu set k-cluster di antara data yang paling mencirikan objek dalam kumpulan suatu data. Hasil penelitian pengelompokan mahasiswa baru menunjukkan bahwa mahasiswa baru yang berasal dari SMA/SMK dengan nilai ujian diatas 70 mengambil jurusan TI, sedangkan mahasiswa baru yang berasal dari SMK dengan nilai ujian dibawah 70 dan SMA dengan nilai ujian dibawah 50 mengambil jurusan SI, dan sisanya mengambil jurusan NON TI/SI. Kualiatas cluster yang dihasilkan berdasarkan proses pengujian yang dilakukan didapatkan hasil nilai Silhouette Coefficient terbaik yaitu 0.690754 dengan jumlah cluster sebanyak tiga dan jumlah data sebanyak 15.","PeriodicalId":332802,"journal":{"name":"RAINSTEK : Jurnal Terapan Sains & Teknologi","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAINSTEK : Jurnal Terapan Sains & Teknologi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21067/jtst.v1i3.3046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Setiap tahun Universitas Kanjuruhan Malang menerima hampir 2.000 mahasiswa yang tersebar diberbagai program studi. Oleh karenanya data yang telah ditampung pastinya banyak sekali, dari data tersebut dapat dilihat pola - pola pemilihan program studi berdasarkan nilai tes, asal sekolah, dan program studi. Penelitian ini menggunakan metode K-Medoids agar dapat diketahui pola pemilihan program studi bagi mahasiswa baru. K-Medoids merupakan metode partisional clustering dimana bertujuan untuk menemukan satu set k-cluster di antara data yang paling mencirikan objek dalam kumpulan suatu data. Hasil penelitian pengelompokan mahasiswa baru menunjukkan bahwa mahasiswa baru yang berasal dari SMA/SMK dengan nilai ujian diatas 70 mengambil jurusan TI, sedangkan mahasiswa baru yang berasal dari SMK dengan nilai ujian dibawah 70 dan SMA dengan nilai ujian dibawah 50 mengambil jurusan SI, dan sisanya mengambil jurusan NON TI/SI. Kualiatas cluster yang dihasilkan berdasarkan proses pengujian yang dilakukan didapatkan hasil nilai Silhouette Coefficient terbaik yaitu 0.690754 dengan jumlah cluster sebanyak tiga dan jumlah data sebanyak 15.
K-MEDOIDS集,了解2018年坎贾汉大学新MAHASIWA学习计划模式
坎专业大学每年接收近2000名分散在不同学习项目中的学生。因此,存储的数据可以从这些数据中看到基于考试成绩、学校背景和学习计划的研究选择模式。本研究采用了K-Medoids方法,以确定新生选择学习计划的模式。K-Medoids是一种分子式的分类方法,目的是在数据集中最重要的对象数据中找到一组k-集群。新生分组研究表明,高考成绩高于70的初中生主修it,而分数低于70的初中生主修SMK的初中生主修thk,高考成绩低于50的高中生主修SI,其余的主修非TI/SI。根据测试过程生成的子簇质量得到了最好的3个集群0.690754和15个集群数据的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信