Hybrid recognizers combining hidden Markov models and multilayer perceptron

J.A. Martins, F. Violaro
{"title":"Hybrid recognizers combining hidden Markov models and multilayer perceptron","authors":"J.A. Martins, F. Violaro","doi":"10.1109/ITS.1998.713107","DOIUrl":null,"url":null,"abstract":"This paper describes some approaches for hybrid recognizers combining hidden Markov models (HMM) and multilayer perceptrons (MLP). One of these approaches employs MLP as a post-processor for HMM while the other uses HMM to segment the speech signal for MLP. The performance of hybrid recognizers is compared with discrete HMM and multilayer perceptrons. All of the implemented recognizers were speaker-independent and a 50-word vocabulary spoken in Brazilian Portuguese was employed in their evaluation. The speech signal was parametrized using mel-frequency cepstrum coefficients, mel-frequency cepstrum coefficients with cepstral mean removal, energy and delta coefficients.","PeriodicalId":205350,"journal":{"name":"ITS'98 Proceedings. SBT/IEEE International Telecommunications Symposium (Cat. No.98EX202)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITS'98 Proceedings. SBT/IEEE International Telecommunications Symposium (Cat. No.98EX202)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITS.1998.713107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes some approaches for hybrid recognizers combining hidden Markov models (HMM) and multilayer perceptrons (MLP). One of these approaches employs MLP as a post-processor for HMM while the other uses HMM to segment the speech signal for MLP. The performance of hybrid recognizers is compared with discrete HMM and multilayer perceptrons. All of the implemented recognizers were speaker-independent and a 50-word vocabulary spoken in Brazilian Portuguese was employed in their evaluation. The speech signal was parametrized using mel-frequency cepstrum coefficients, mel-frequency cepstrum coefficients with cepstral mean removal, energy and delta coefficients.
隐马尔可夫模型与多层感知器的混合识别
本文介绍了隐马尔可夫模型(HMM)与多层感知器(MLP)相结合的混合识别方法。其中一种方法使用隐马尔科夫(MLP)作为HMM的后处理器,另一种方法使用隐马尔科夫(HMM)为MLP分割语音信号。将混合识别器的性能与离散HMM和多层感知器进行了比较。所有实现的识别器都是独立于说话者的,并且在他们的评估中使用了50个巴西葡萄牙语词汇。对语音信号进行了mel-frequency倒谱系数、mel-frequency倒谱系数与倒谱均值去除、能量系数和δ系数的参数化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信