A multilevel green function interpolation method to efficiently construct the EFIE MoM-matrix for 2D-periodic PEC structures in 3D space

P. Joma, V. Lancellotti, M. V. van Beurden
{"title":"A multilevel green function interpolation method to efficiently construct the EFIE MoM-matrix for 2D-periodic PEC structures in 3D space","authors":"P. Joma, V. Lancellotti, M. V. van Beurden","doi":"10.1109/ICEAA.2016.7731457","DOIUrl":null,"url":null,"abstract":"For scattering by perfectly conducting objects in a two-dimensionally periodic setup we employ a surface-integral equation, the Ewald representation of the Green function, and the Method of Moments (MoM). For moderate-size matrices, we observe that the computation time is dominated by the computation of the matrix elements. By employing a multi-level decomposition of the Green function based on Lagrange interpolation on a Chebyshev grid, we demonstrate that the overall computation time can be reduced by 73% compared to the original MoM computation.","PeriodicalId":434972,"journal":{"name":"2016 International Conference on Electromagnetics in Advanced Applications (ICEAA)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Electromagnetics in Advanced Applications (ICEAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAA.2016.7731457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For scattering by perfectly conducting objects in a two-dimensionally periodic setup we employ a surface-integral equation, the Ewald representation of the Green function, and the Method of Moments (MoM). For moderate-size matrices, we observe that the computation time is dominated by the computation of the matrix elements. By employing a multi-level decomposition of the Green function based on Lagrange interpolation on a Chebyshev grid, we demonstrate that the overall computation time can be reduced by 73% compared to the original MoM computation.
一种多层格林函数插值方法在三维空间中高效构造二维周期PEC结构的EFIE MoM-matrix
对于二维周期装置中完全导电物体的散射,我们采用了表面积分方程、格林函数的埃瓦尔德表示和矩量法。对于中等大小的矩阵,我们观察到计算时间主要由矩阵元素的计算决定。通过在Chebyshev网格上采用基于拉格朗日插值的Green函数的多级分解,我们证明了与原始MoM计算相比,总体计算时间可以减少73%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信