Interpretable Nonnegative Incoherent Deep Dictionary Learning for FMRI Data Analysis

Manuel Morante, Jan Østergaard, S. Theodoridis
{"title":"Interpretable Nonnegative Incoherent Deep Dictionary Learning for FMRI Data Analysis","authors":"Manuel Morante, Jan Østergaard, S. Theodoridis","doi":"10.1109/ICASSP49357.2023.10095297","DOIUrl":null,"url":null,"abstract":"Extracting information from fMRI data constitutes a broad active area of research. Current techniques still present several limitations; some ignore relevant aspects regarding the brain functioning or lack of interpretability. In an effort to overcome such limitations, we introduce an extension of the sparse matrix factorization approach to a multilinear decomposition. The proposed model is built upon natural justifiable assumptions and better accommodates the brain behavior. Tests on realistic synthetic as well as real fMRI datasets demonstrate significant performance gains over existing methods of this kind.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10095297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Extracting information from fMRI data constitutes a broad active area of research. Current techniques still present several limitations; some ignore relevant aspects regarding the brain functioning or lack of interpretability. In an effort to overcome such limitations, we introduce an extension of the sparse matrix factorization approach to a multilinear decomposition. The proposed model is built upon natural justifiable assumptions and better accommodates the brain behavior. Tests on realistic synthetic as well as real fMRI datasets demonstrate significant performance gains over existing methods of this kind.
用于FMRI数据分析的可解释非负非相干深度字典学习
从功能磁共振成像数据中提取信息构成了一个广泛活跃的研究领域。目前的技术仍然存在一些局限性;一些人忽略了与大脑功能相关的方面或缺乏可解释性。为了克服这些限制,我们将稀疏矩阵分解方法扩展到多线性分解。所提出的模型建立在自然的合理假设之上,更好地适应了大脑的行为。在真实的合成和真实的fMRI数据集上的测试表明,与现有的这种方法相比,这种方法的性能有了显著的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信