Predicting continuous epitopes in proteins

Reeti Tandon, S. Adak, B. Sarachan, W. FitzHugh, Jeremy Heil, Vaibhav A. Narayan
{"title":"Predicting continuous epitopes in proteins","authors":"Reeti Tandon, S. Adak, B. Sarachan, W. FitzHugh, Jeremy Heil, Vaibhav A. Narayan","doi":"10.1109/CSBW.2005.109","DOIUrl":null,"url":null,"abstract":"The ability to predict antigenic sites on proteins is crucial for the production of synthetic peptide vaccines and synthetic peptide probes of antibody structure. Large number of amino acid propensity scales based on various properties of the antigenic sites like hydrophilicity, flexibility/mobility, turns and bends have been proposed and tested previously. However these methods are not very accurate in predicting epitopes and non-epitope regions. We propose algorithms that combine 14 best performing individual propensity scales and give better prediction accuracy as compared to individual scales.","PeriodicalId":123531,"journal":{"name":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSBW.2005.109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The ability to predict antigenic sites on proteins is crucial for the production of synthetic peptide vaccines and synthetic peptide probes of antibody structure. Large number of amino acid propensity scales based on various properties of the antigenic sites like hydrophilicity, flexibility/mobility, turns and bends have been proposed and tested previously. However these methods are not very accurate in predicting epitopes and non-epitope regions. We propose algorithms that combine 14 best performing individual propensity scales and give better prediction accuracy as compared to individual scales.
预测蛋白质中的连续表位
预测蛋白质上抗原位点的能力对于合成肽疫苗和合成抗体结构的肽探针的生产至关重要。基于抗原位点的各种特性,如亲水性、柔韧性/迁移性、弯曲度和弯曲度,已经提出并测试了大量的氨基酸倾向量表。然而,这些方法在预测表位和非表位区域时并不十分准确。我们提出的算法结合了14个表现最好的个体倾向量表,并提供了更好的预测精度相比,个人尺度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信