Automated Behavior-based Malice Scoring of Ransomware Using Genetic Programming

Muhammad Shabbir Abbasi, Harith Al-Sahaf, I. Welch
{"title":"Automated Behavior-based Malice Scoring of Ransomware Using Genetic Programming","authors":"Muhammad Shabbir Abbasi, Harith Al-Sahaf, I. Welch","doi":"10.1109/SSCI50451.2021.9660009","DOIUrl":null,"url":null,"abstract":"Malice or severity scoring models are a technique for detection of maliciousness. A few ransomware detection studies utilise malice scoring models for detection of ransomware-like behavior. These models rely on the weighted sum of some manually chosen features and their weights by a domain expert. To automate the modelling of malice scoring for ransomware detection, we propose a method based on Genetic Programming (GP) that automatically evolves a behavior-based malice scoring model by selecting appropriate features and functions from the input feature and operator sets. The experimental results show that the best-evolved model correctly assigned a malice score, below the threshold value to over 85% of the unseen goodware instances, and over the threshold value to more than 99% of the unseen ransomware instances.","PeriodicalId":255763,"journal":{"name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI50451.2021.9660009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Malice or severity scoring models are a technique for detection of maliciousness. A few ransomware detection studies utilise malice scoring models for detection of ransomware-like behavior. These models rely on the weighted sum of some manually chosen features and their weights by a domain expert. To automate the modelling of malice scoring for ransomware detection, we propose a method based on Genetic Programming (GP) that automatically evolves a behavior-based malice scoring model by selecting appropriate features and functions from the input feature and operator sets. The experimental results show that the best-evolved model correctly assigned a malice score, below the threshold value to over 85% of the unseen goodware instances, and over the threshold value to more than 99% of the unseen ransomware instances.
基于自动行为的基于遗传编程的勒索软件恶意评分
恶意或严重性评分模型是一种检测恶意的技术。一些勒索软件检测研究利用恶意评分模型来检测类似勒索软件的行为。这些模型依赖于领域专家手动选择的一些特征及其权重的加权和。为了实现勒索软件检测恶意评分的自动化建模,我们提出了一种基于遗传规划(GP)的方法,该方法通过从输入特征和算子集中选择适当的特征和函数,自动进化出基于行为的恶意评分模型。实验结果表明,进化最好的模型正确地分配了恶意分数,低于阈值的恶意分数超过85%的未见恶意软件实例,高于阈值的恶意分数超过99%的未见勒索软件实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信