Asymptotic stabilization of the desired uniform rotation by linear and nonlinear feedback

I. Burkov
{"title":"Asymptotic stabilization of the desired uniform rotation by linear and nonlinear feedback","authors":"I. Burkov","doi":"10.1109/SCP.2015.7342071","DOIUrl":null,"url":null,"abstract":"In some cases the desired uniform motion may be described by a pair of first integrals of the system with zero control input. The linear-quadratic combination of these two integrals is used to construct Lyapunov function. The control is designed from the condition of decreasing Lyapunov function on the trajectories of the closed loop system. This control may be chosen a priori bounded. This method is applied to stabilize circular motion of a satellite around gravitational center, for stabilization inertia wheel pendulum and for swinging a pendubot.","PeriodicalId":110366,"journal":{"name":"2015 International Conference \"Stability and Control Processes\" in Memory of V.I. Zubov (SCP)","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference \"Stability and Control Processes\" in Memory of V.I. Zubov (SCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCP.2015.7342071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In some cases the desired uniform motion may be described by a pair of first integrals of the system with zero control input. The linear-quadratic combination of these two integrals is used to construct Lyapunov function. The control is designed from the condition of decreasing Lyapunov function on the trajectories of the closed loop system. This control may be chosen a priori bounded. This method is applied to stabilize circular motion of a satellite around gravitational center, for stabilization inertia wheel pendulum and for swinging a pendubot.
用线性和非线性反馈的期望均匀旋转的渐近镇定
在某些情况下,期望的均匀运动可以用系统的一对零控制输入的第一积分来描述。利用这两个积分的线性二次组合构造李雅普诺夫函数。根据闭环系统轨迹上李雅普诺夫函数的递减条件设计控制。这个控件可以是先验有界的。应用该方法稳定了卫星绕重力中心的圆周运动,稳定了惯性轮摆和摆钟的摆动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信