Online Incremental Learning Algorithm for anomaly detection and prediction in health care

Kirthanaa Raghuraman, Monisha Senthurpandian, Monisha Shanmugasundaram, Bhargavi, V. Vaidehi
{"title":"Online Incremental Learning Algorithm for anomaly detection and prediction in health care","authors":"Kirthanaa Raghuraman, Monisha Senthurpandian, Monisha Shanmugasundaram, Bhargavi, V. Vaidehi","doi":"10.1109/ICRTIT.2014.6996092","DOIUrl":null,"url":null,"abstract":"Anomaly Detection in health care by monitoring the vital health parameters of patients is a challenging problem in machine learning. The existing algorithms do not process the data incrementally and hence are not very effective in predicting the anomalies accurately and at the correct instance. In this paper, in order to process the health data in an online fashion a novel Online Incremental Learning Algorithm (OILA) is proposed. The OILA predicts the health parameters using a regression based approach with a feedback mechanism to reduce error. An alert is generated when an anomaly is seen in the health parameters, thus alerting the doctor to be cautious. The algorithm is compared with Kalman Filter for comparing the prediction capabilities of OILA with Kalman Filter. The proposed algorithm is validated with real time health parameter data sets for health parameters namely heart rate and blood pressure.","PeriodicalId":422275,"journal":{"name":"2014 International Conference on Recent Trends in Information Technology","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Recent Trends in Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRTIT.2014.6996092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Anomaly Detection in health care by monitoring the vital health parameters of patients is a challenging problem in machine learning. The existing algorithms do not process the data incrementally and hence are not very effective in predicting the anomalies accurately and at the correct instance. In this paper, in order to process the health data in an online fashion a novel Online Incremental Learning Algorithm (OILA) is proposed. The OILA predicts the health parameters using a regression based approach with a feedback mechanism to reduce error. An alert is generated when an anomaly is seen in the health parameters, thus alerting the doctor to be cautious. The algorithm is compared with Kalman Filter for comparing the prediction capabilities of OILA with Kalman Filter. The proposed algorithm is validated with real time health parameter data sets for health parameters namely heart rate and blood pressure.
医疗保健异常检测与预测的在线增量学习算法
通过监测患者的重要健康参数来检测医疗保健中的异常是机器学习中的一个具有挑战性的问题。现有的算法没有对数据进行增量处理,因此不能很好地在正确的实例上准确地预测异常。为了在线处理健康数据,本文提出了一种新的在线增量学习算法(OILA)。OILA使用基于回归的方法和反馈机制来预测健康参数,以减少误差。当在健康参数中看到异常时,将生成警报,从而提醒医生要小心。将该算法与卡尔曼滤波进行比较,比较了两种算法的预测能力。用实时健康参数数据集(即心率和血压)对该算法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信