Multi-class relevance feedback for collaborative image retrieval

K. Chandramouli, E. Izquierdo
{"title":"Multi-class relevance feedback for collaborative image retrieval","authors":"K. Chandramouli, E. Izquierdo","doi":"10.1109/WIAMIS.2009.5031471","DOIUrl":null,"url":null,"abstract":"In recent years, there is an emerging interest to analyse and exploit the log data recorded from different user interactions for minimising the semantic gap problem from multi-user collaborative environments. These systems are referred as “Collaborative Image Retrieval systems”. In this paper, we present an approach for collaborative image retrieval using multi-class relevance feedback. The relationship between users and concepts is derived using Lin Semantic similarity measure from WordNet. Subsequently, the Particle Swarm Optimisation classifier based relevance feedback is used to retrieve similar documents. The experimental results are presented on two well-known datasets namely Corel 700 and Flickr Image dataset. Similarly, the performance of the Particle Swarm Optimised retrieval engine is evaluated against the Genetic Algorithm optimised retrieval engine.","PeriodicalId":233839,"journal":{"name":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","volume":"304 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2009.5031471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In recent years, there is an emerging interest to analyse and exploit the log data recorded from different user interactions for minimising the semantic gap problem from multi-user collaborative environments. These systems are referred as “Collaborative Image Retrieval systems”. In this paper, we present an approach for collaborative image retrieval using multi-class relevance feedback. The relationship between users and concepts is derived using Lin Semantic similarity measure from WordNet. Subsequently, the Particle Swarm Optimisation classifier based relevance feedback is used to retrieve similar documents. The experimental results are presented on two well-known datasets namely Corel 700 and Flickr Image dataset. Similarly, the performance of the Particle Swarm Optimised retrieval engine is evaluated against the Genetic Algorithm optimised retrieval engine.
基于多类关联反馈的协同图像检索
近年来,人们对分析和利用不同用户交互记录的日志数据,以最大限度地减少多用户协作环境中的语义缺口问题越来越感兴趣。这些系统被称为“协同图像检索系统”。本文提出了一种基于多类相关反馈的协同图像检索方法。使用WordNet中的Lin语义相似度度量来推导用户与概念之间的关系。随后,使用基于粒子群优化分类器的相关反馈来检索相似文档。在Corel 700和Flickr Image两个知名数据集上给出了实验结果。同样,将粒子群优化检索引擎的性能与遗传算法优化检索引擎进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信