Speech-based emotion classification using multiclass SVM with hybrid kernel and thresholding fusion

Na Yang, R. Muraleedharan, J. Kohl, I. Demirkol, W. Heinzelman, Melissa L. Sturge‐Apple
{"title":"Speech-based emotion classification using multiclass SVM with hybrid kernel and thresholding fusion","authors":"Na Yang, R. Muraleedharan, J. Kohl, I. Demirkol, W. Heinzelman, Melissa L. Sturge‐Apple","doi":"10.1109/SLT.2012.6424267","DOIUrl":null,"url":null,"abstract":"Emotion classification is essential for understanding human interactions and hence is a vital component of behavioral studies. Although numerous algorithms have been developed, the emotion classification accuracy is still short of what is desired for the algorithms to be used in real systems. In this paper, we evaluate an approach where basic acoustic features are extracted from speech samples, and the One-Against-All (OAA) Support Vector Machine (SVM) learning algorithm is used. We use a novel hybrid kernel, where we choose the optimal kernel functions for the individual OAA classifiers. Outputs from the OAA classifiers are normalized and combined using a thresholding fusion mechanism to finally classify the emotion. Samples with low `relative confidence' are left as `unclassified' to further improve the classification accuracy. Results show that the decision-level recall of our approach for six-class emotion classification is 80.5%, outperforming a state-of-the-art approach that uses the same dataset.","PeriodicalId":375378,"journal":{"name":"2012 IEEE Spoken Language Technology Workshop (SLT)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2012.6424267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

Abstract

Emotion classification is essential for understanding human interactions and hence is a vital component of behavioral studies. Although numerous algorithms have been developed, the emotion classification accuracy is still short of what is desired for the algorithms to be used in real systems. In this paper, we evaluate an approach where basic acoustic features are extracted from speech samples, and the One-Against-All (OAA) Support Vector Machine (SVM) learning algorithm is used. We use a novel hybrid kernel, where we choose the optimal kernel functions for the individual OAA classifiers. Outputs from the OAA classifiers are normalized and combined using a thresholding fusion mechanism to finally classify the emotion. Samples with low `relative confidence' are left as `unclassified' to further improve the classification accuracy. Results show that the decision-level recall of our approach for six-class emotion classification is 80.5%, outperforming a state-of-the-art approach that uses the same dataset.
基于混合核和阈值融合的多类支持向量机语音情感分类
情绪分类对于理解人类互动至关重要,因此也是行为研究的重要组成部分。虽然已经开发了许多算法,但情感分类的精度仍然不能满足算法在实际系统中使用的要求。在本文中,我们评估了一种从语音样本中提取基本声学特征的方法,该方法使用了一对全(OAA)支持向量机(SVM)学习算法。我们使用了一种新的混合核,其中我们为单个OAA分类器选择最优的核函数。OAA分类器的输出被归一化,并使用阈值融合机制进行组合,最终对情感进行分类。“相对置信度”较低的样本被保留为“未分类”,以进一步提高分类精度。结果表明,我们的方法对六类情绪分类的决策级召回率为80.5%,优于使用相同数据集的最先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信