Modeling and Simulation of MPPT ZETA Converter Using Human Psychology Optimization Algorithm Under Partial Shading Condition

Fitriyah Fitriyah, M. Z. Efendi, Farid Dwi Murdianto
{"title":"Modeling and Simulation of MPPT ZETA Converter Using Human Psychology Optimization Algorithm Under Partial Shading Condition","authors":"Fitriyah Fitriyah, M. Z. Efendi, Farid Dwi Murdianto","doi":"10.1109/IES50839.2020.9231890","DOIUrl":null,"url":null,"abstract":"The increasing development of renewable energy, especially photovoltaic (PV) more applicable in daily use. Unfortunately, PV has the disadvantage that it is vulnerable to shadow exposures that decrease power output depending on the scale of the shadow. The disadvantage includes the shadow of buildings, leaves, trees, etc. Shaded PV surface has two peak power conditions named Global Maximum Power Point (GMPP) and Local Maximum Power Point (LMPP). These conditions cause MPPT to be trapped in the LMPP so that the power obtained is not the actual power. The conventional method can be trapped in LMPP because it cannot distinguish GMPP and LMPP. These problems can be solved by using the Human Psychology Optimization (HPO) algorithm. This algorithm was chosen to overcome the effects of partial shading conditions so that MPPT can reach GMPP without getting stuck in LMPP. This algorithm is connected to ZETA Converter to produce real maximum power points. This research uses four shading patterns with different irradiation. HPO algorithm achieves the highest accuracy 99.99% with a tracking time 0.326 seconds occurring in the first shading pattern.","PeriodicalId":344685,"journal":{"name":"2020 International Electronics Symposium (IES)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Electronics Symposium (IES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IES50839.2020.9231890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The increasing development of renewable energy, especially photovoltaic (PV) more applicable in daily use. Unfortunately, PV has the disadvantage that it is vulnerable to shadow exposures that decrease power output depending on the scale of the shadow. The disadvantage includes the shadow of buildings, leaves, trees, etc. Shaded PV surface has two peak power conditions named Global Maximum Power Point (GMPP) and Local Maximum Power Point (LMPP). These conditions cause MPPT to be trapped in the LMPP so that the power obtained is not the actual power. The conventional method can be trapped in LMPP because it cannot distinguish GMPP and LMPP. These problems can be solved by using the Human Psychology Optimization (HPO) algorithm. This algorithm was chosen to overcome the effects of partial shading conditions so that MPPT can reach GMPP without getting stuck in LMPP. This algorithm is connected to ZETA Converter to produce real maximum power points. This research uses four shading patterns with different irradiation. HPO algorithm achieves the highest accuracy 99.99% with a tracking time 0.326 seconds occurring in the first shading pattern.
部分遮阳条件下MPPT ZETA转换器的人心理优化算法建模与仿真
可再生能源的日益发展,尤其是光伏(PV)在日常使用中更加适用。不幸的是,PV有一个缺点,它很容易受到阴影暴露的影响,这会根据阴影的大小减少功率输出。缺点包括建筑物、树叶、树木等的阴影。遮荫PV面具有全局最大功率点(GMPP)和局部最大功率点(LMPP)两个峰值功率条件。这些情况会导致MPPT被困在LMPP中,从而获得的功率不是实际功率。传统的方法由于无法区分GMPP和LMPP,容易陷入LMPP。这些问题可以通过人类心理优化算法来解决。选择该算法是为了克服部分遮阳条件的影响,使MPPT可以达到GMPP而不会陷入LMPP。该算法与ZETA转换器连接,产生真正的最大功率点。本研究采用四种不同辐照度的遮阳模式。HPO算法达到了最高的准确率99.99%,跟踪时间为0.326秒,发生在第一个阴影模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信