Identifying Relevant Data Center Telemetry Using Change Point Detection

Daniel S. F. Alves, K. Obraczka, Rick Lindberg
{"title":"Identifying Relevant Data Center Telemetry Using Change Point Detection","authors":"Daniel S. F. Alves, K. Obraczka, Rick Lindberg","doi":"10.1109/CloudNet51028.2020.9335800","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on the problem of data center performance monitoring, more specifically, how to manage the large volume of data generated by data center telemetry tools. We propose a framework that uses Change Point Detection (CPD) to identify sources of useful telemetry and based on that information, filters incoming telemetry data in real-time as the data center operates. To evaluate our proposed CPD-based telemetry triage framework, we conducted experiments using a small emulated data center driven by different workloads. We also report results from experiments with telemetry data collected from a privately-owned, commercial, multi-tenant data center. Preliminary experimental results show that our CPD-based tool can filter out significant amounts of irrelevant telemetry while preserving most relevant telemetry sources.","PeriodicalId":156419,"journal":{"name":"2020 IEEE 9th International Conference on Cloud Networking (CloudNet)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 9th International Conference on Cloud Networking (CloudNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudNet51028.2020.9335800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we focus on the problem of data center performance monitoring, more specifically, how to manage the large volume of data generated by data center telemetry tools. We propose a framework that uses Change Point Detection (CPD) to identify sources of useful telemetry and based on that information, filters incoming telemetry data in real-time as the data center operates. To evaluate our proposed CPD-based telemetry triage framework, we conducted experiments using a small emulated data center driven by different workloads. We also report results from experiments with telemetry data collected from a privately-owned, commercial, multi-tenant data center. Preliminary experimental results show that our CPD-based tool can filter out significant amounts of irrelevant telemetry while preserving most relevant telemetry sources.
使用变化点检测识别相关数据中心遥测
在本文中,我们主要关注数据中心性能监控问题,更具体地说,是如何管理数据中心遥测工具产生的大量数据。我们提出了一个框架,该框架使用变化点检测(CPD)来识别有用的遥测来源,并基于该信息,在数据中心运行时实时过滤传入的遥测数据。为了评估我们提出的基于cpd的遥测分类框架,我们使用由不同工作负载驱动的小型模拟数据中心进行了实验。我们还报告了从私有、商业、多租户数据中心收集的遥测数据的实验结果。初步实验结果表明,基于cpd的工具可以过滤掉大量不相关的遥测数据,同时保留大多数相关的遥测数据源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信